

SV3H-E series AC servo driver User Manual

- Thank you for purchasing SINSEGYE servo drivers.
- Before operating this product, please read the manual carefully.
- Please save this manual for future use.
- If there are some changes of this manual, it wouldn't inform users.

Preface

Thank you for utilizing our products. This manual provides information on SV3H servo drives and the corresponding motors.

Content

- Installation and inspection of servo drives & motors
- servo architecture and the wiring diagrams
- Steps of commissioning operation
- Training on servo tuning
- Description on parameters
- Description on communication protocol
- Alarm clear
- Inspection and maintenance

SV3H features

SV3H servo drive is general AC servo product independently developed by SINSEGYE, which provides inertia identification, automatic gain adjustment and other functions to make the drive simple and easy to use. With the latest development of servo motors, it achieves rapid and accurate control with cost-effective solutions in electronic manufacturing, robot, packaging, lathe and other industries of automation. The latest improved design for servo drive structure can save the inner space of cabinet. The new generation of motor design can meet the need on miniaturization of equipment structure and lightweight.

How to use this manual

This manual will tell you how to install, configure, use and maintain the product. Prior to tuning, read Chapter 1 to Chapter 8.

Technical service

If you still have problems with the application, please contact the distributor or our customer service center.

Version change log

Date of release	Version	Change
		9

Preface

2024.7	V1.0	First edition release

Copyright statement

All the right reserved by SINSEGYE. Do not to reproduce or disseminate any part of this manual in any format without the Company's permission.

Disclaimer

This product documentation is accurate and reliable at the time of release, and SINSEGYE reserves the right to change this manual without any additional notice.

About the manual

This manual is not attached to the product package. If you need to get electronic PDF files, download on SINSEGYE website (https://www.sinsegye.com.cn/). If you need consulting or assistance, please contact our company.

Contents

Preface	i
Contents	III
Safety precautions]
Chapter 1 Model selection and installation	1-1
1.1 Model Definition for Servo Drives	1-1
1.2 Model Definition for Motors	1-2
1.2.1 SM3-M2 Motor	1-2
1.2.2 SM3-M3 Motor	1-3
1.3 Specifications	1-4
1.3.1 Basic Parameters of the Model	1-4
1.3.2 Specifications of EtherCAT Communication	1-6
1.3.3 Electrical Parameters of Models	1-7
1.4 Description on Components	
1.4.1 SIZE A Model	1-8
1.4.2 SIZE B Model	1-9
1.4.3 SIZE C Model	1-10
1.4.4 SIZE D Model	1-11
1.5 Installation of Drives	1-12
1.5.1 Installation Site	1-12
1.5.2 Environmental Conditions	1-12
1.5.3 Installation Dimensions	1-13
1.5.4 Installation Precautions	1-15
1.5.5 Grounding	1-16
1.5.6 Wiring Requirements	1-16
1.6 Motor Installation	1-17
1.6.1 Installation Site	1-17
1.6.2 Environment Conditions	1-17
1.6.3 Installation Methods	1-17
1.6.4 Protection Countermeasures for Oil and Water	1-18
1.6.5 Cable stress	1-18
1.7 Wiring for Cable Carrier Guide Rail	1-19
Chapter 2 Wiring	2-1
2.1 Description on System Wiring	2-1
2.1.1 SIZE A System wiring diagram	2-1
2.1.2 SIZE B System wiring diagram	2-2
2.1.3 SIZE C System wiring diagram	2-3
2.1.4 SIZE D System wiring diagram	2-4
2.2 Servo Drive Port Definition	2-5
2.3 Definition and wiring description of power terminals	2-6
2.3.1 Definition of power supply and motor terminals	2-6

2.3.2 Wiring of circlip terminals	2-9
2.3.3 Sample of Main Circuit Wiring	2-10
2.3.4 Specification of Main Loop Cable	2-14
2.4 Common DC Bus Cable Wiring	2-15
2.5 Description of regenerative resistance wiring	2-16
2.5.1 Connecting regenerative resistance wiring	2-16
2.5.2 Specifications of regenerative resistors	2-17
2.5.3 Selection and calculation of regenerative resistance	2-18
2.6 Wiring of Holding brake	2-19
2.7 Description of Control Signal CN5 Port Wiring	2-20
2.7.1 Definition of Control Signal CN5 Port	2-20
2.7.2 Description of Digital Input Wiring	2-21
2.7.3 Description of Digital Output Wiring	2-23
2.7.4 Description of Frequency Division Output Wiring	2-26
2.8 Encoder interface definition and wiring description	2-27
2.8.1 Motor encoder	2-27
2.8.2 Full closed-loop encoder	2-28
2.8.3 Input of motor temperature sensor	2-29
2.9 Definition of Communication Ports	2-30
2.9.1 Serial communication port	2-30
2.9.2 EtherCAT Communication Port	2-31
2.10 Definition and Wiring Description of Functional Safety Terminals	2-32
2.10.1 Definition of Functional Security Terminals	2-32
2.10.2 Function Safety Wiring Description	2-33
2.10.3 Relationship of STO I/O Signals	2-33
2.11 Grounding and anti-interference measures	2-34
2.11.1 Grounding Measures	2-34
2.11.2 Anti-interference measures	2-34
2.11.3 Noise filter	2-35
2.11.4 Leakage protection circuit breaker	2-38
2.11.5 Cable and wiring Requirements	2-38
2.11.6 I/O magnetic ring selection	2-41
2.11.7 Solutions to common EMC problems	2-41
2.12 General Wiring Diagram	2-43
Chapter 3 Commissioning	3-1
3.1 Settings of Basic Operation	3-1
3.1.1 Motor Tuning	3-1
3.1.2 Lock Setting	3-5
3.1.3 Selection of Running Direction	3-9
3.1.4 Absolute Value Function	3-10
3.1.5 Setting of Electronic Gear Ratio	3-12
3.1.6 Time sequence diagram	
3.1.7 Operation	3-20
3.1.8 Stop	3-21

3.2 Panel Control Operation	3-25
3.2.1 Introduction of Panel	3-25
3.2.2 Jog Operation	3-30
3.3 Use the Servo3 Designer	
3.3.1 Overview	3-32
3.3.2 Operating Environment	
3.3.3 Parameter Management	3-32
3.3.4 Oscilloscope	3-34
3.3.5 Initialization	3-37
3.3.6 Commissioning	3-39
3.3.7 Tuning	3-43
3.3.8 Troubleshooting	3-46
3.4 EtherCAT control operation	3-49
3.4.1 Running Status Control	3-49
3.4.2 PDO Configuration	3-56
3.4.3 Setting of Operation Mode	3-59
3.4.4 Application Functions	3-122
Chapter 4 Gain Adjustment	4-1
4.1 Purpose	4-1
4.2 Tuning Method	4-2
4.2.1 Mechanical load identification	4-3
4.2.2 Manual gain adjustment	4-7
4.2.3 Gain Switching	4-17
4.2.4 Automatic gain adjustment	4-24
4.3 Vibration suppression	4-27
4.3.1 Notch Filter	4-27
4.3.2 Vibration Suppression	4-28
4.4 Common Application Scenarios	4-32
4.4.1 Load of ball screw	4-32
4.4.2 Synchronous Belt Load	4-33
4.4.3 Rack and pinion load	4-34
4.4.4 Inertia disk load	4-35
4.4.5 Long cantilever load	4-36
Chapter 5 Troubleshooting and Alarm	5-1
5.1 Display and Review	5-1
5.2 Error Code Overview	5-2
5.3 Alarm Code Overview	5-3
5.4 Troubleshooting	5-5
5.5 Alarm Handling	5-14
5.6 Resetting Methods	5-16
Chapter 6 EtherCAT Communication	6-1
6.1 Overview	6-1
6.1.1 Overview of EtherCAT	6-1
6.1.2 Host/Slave System Composition	6-1

6.1.3 ESC Overview	6-2
6.1.4 Structure of EtherCAT Application Layer Protocol	6-4
6.2 EtherCAT Specification	6-5
6.2.1 EtherCAT Frame Structure	6-5
6.2.2 Addressing Mode	6-7
6.2.3 Frame Processing Sequence	6-10
6.2.4 ESC Register	6-11
6.2.5 ESM(EtherCAT State Machine)	6-14
6.2.6 SII(Slave Information Interface) EEPROM	6-15
6.2.7 Synchronization Mode	6-17
6.2.8 MailBox Mailbox Structure	6-17
6.2.9 PDO(Process Data Object)	6-25
Chapter 7 Object Dictionary	7-1
7.1 Allocation List of Object Group 1000h	7-1
7.2 Allocation List of Object Groups 2000h	7-11
7.3 Allocation List of Object Group 6000h	7-47
Chapter 8 Appendix	8-1
8.1 Definition of DI/DO functions	8-1
8.2 SDO Transmission Stop Code	8-4
8.3 Application Cases of Adapting Codesys Host Station	8-7
8.4 Adapting TwinCAT Operation Guide	8-9
8.4.1 TwinCAT Jog Operation	8-9
8.4.2 TwinCAT3-PDO Control Operation	8-18
8.5 Samples for Various Mode Operation	8-21
8.5.1 Samples for CSP Mode	8-21
8.5.2 Samples for CSV Mode	8-22
8.5.3 Samples for CST Mode	8-23
8.5.4 Samples for PP Mode	8-24
8.5.5 Samples for PV Mode	8-25
8.5.6 Samples for PT mode	8-26
8.5.7 Return to Zero Operation Sample	8-27

Safety precautions

Safety Statement

- This chapter describes the safety precautions for proper use of the product. Before using this product, please read the instruction manual and correctly understand the relevant safety precautions. Failure to comply with the safety precautions may result in death, serious injury, or equipment damage.
- "Danger", "Alarm" and "attention" in the manual do not represent all the safety matters that shall be followed, but only supplement all the safety precautions.
- This product should be used in an environment that meets the requirements of the design specifications, otherwise it may cause failure, and functional abnormalities or component damage caused by failure to comply with the relevant regulations are not within the scope of product quality assurance.
- Our company will not bear any legal responsibility for personal safety accidents and property losses caused by non-compliance with the contents of this chapter and illegal operation of products.

Note for safety levels

<u>^</u>	Danger	The sign refers to "To result in death or serious injury".					
	Alarm	The sign refers to "The most probably to result in death or serious injury".					
	Attention	The sign refers to "The most probably to result in injury or damage to property".					

Note for safety precautions

Unpacking acceptance

Alarm

- Do not install if product and the accessories are found while unpacking with damage, rust, trace of use,etc.
- Do not install if there is any water inside product, or missing part, or damanged part.
- Please check the packing list carefully. If the packing list does not match product name, do not install!

Attention

- Before unpacking, check if outer package of the device is intact, damaged, soaked, damp, or deformed.
- Please open the package in order. Do not knock it hard!
- Before unpacking, please check the surface of the equipment and accessories for damage, rust or damage.
- After unpacking, please check if quantity and information of equipment and accessories are complete in accordance with the packing list.

Storage and transport

Alarm

- Be sure to use professional lifting equipment and have qualified personnel operate large/heavy products. Otherwise, there is the risk of injury or product damage!
- Before lifting the product vertically, ensure that the front cover, terminal block and other components
 of product are firmly secured with screws. Otherwise, components might fall off, that results in personal
 injury or product damage.
- When the product is being lifted by lifting equipment, it is forbidden to stand or stay under the product.
- When lifting the product with wire rope, please lift it at a steady and uniform speed, prevent products from vibration or impact; Do not turn products over, nor make products in lifting state for a long time, or there is the risk of personal injury or product damage!

Attention

- While moving the product, be sure to handle it gently and always pay attention to any object under feet to prevent tripping or falling, or it may result in personal injury or product damage!
- When handling the product manually, be sure to grasp product shell firmly to avoid any component falling, or it might result in personal injury!
- Please store and transport in strict accordance with the required storage and transportation conditions
 of product, or there is a risk of product damage.
- Avoid storage and transportation in such places as water splashing and rain falling, direct sunlight, strong electric field, strong magnetic field, and strong vibration.
- Avoid product storage time above 3 months, if the period was too long, please take more stringent protection and necessary inspection.
- Please strictly package the product prior to vehicle transportation; For long distance transportation, it must use the enclosed cargo van.
- It's strictly prohibited to transport this product together with equipment or articles that may affect or damage this product.

Installation

Danger

Operators must obtain electrical knowledge and have been trained on electrical equipment.
 Non-professional personnel are strictly prohibited for any operation!

Alarm

- Please read the user's manual and safety precautions carefully prior to installation!
- Do not install this product in places in strong electric field or with strong electromagnetic wave interference!
- Before installation, please make sure that the mechanical strength of installation positions is sufficient to support device weight. Otherwise, it might casue mechanical hazards.
- Do not wear loose clothing or accessories during installation, otherwise there might be a risk of electric shock!
- When installing the product in the enclosed environment (e.g., cabinet or chassis), please use the

- cooling device (e.g., cooling fan or cooling AC.) to cool the product sufficiently in order to meet the environment requirement on installation. Otherwise, it might cause product overheart or even a fire.
- It's strictly prohibited to modify this product!
- It's strictly forbidden to screw the fixing bolts and red marked bolts of parts and components of product!
- When the product is installed in a cabinet or terminal equipment which shall be provided with fire
 protection shell, electrical protection shell and mechanical protection shell. The protection level shall
 comply with relevant IEC standards and local rules and regulations.
- When it's necessary to install the equipment with strong electromagnetic interference such as transformer, please install shielding protection device to avoid misoperation of this product!
- Please install the product on flame-retardant metal, do not make flammable substances contact the product or attach flammable substances to the product, otherwise there might be a risk of fire.

Attention

- During installation, please cover the top of product with cloth or paper to prevent foreign articles, such as scrap metal, oil and water, from entering the product that could result in Errors. After operation, please remove the cover to avoid blocking the ventilation and affecting heat radiation, that results in abnormal heating of product.
- Resonance may occur when a machine at a constant speed runs at variable speeds. Here, it can
 effectively weaken the resonance to mount the anti-vibration rubber under motor frame or to utilize
 vibration suppression function.

Wiring

Danger

- It's strictly prohibited for non-professional personnel to perform equipment installation, wiring, maintenance, inspection or part replacement!
- Before wiring, please power off all devices. As the power-off devices have built-in capacitors which have residual voltage, please wait at least the period specified in the Alarm label before wiring. Measure DC voltage of main loop and confirm that it's under the safe voltage, otherwise there is a risk of electric shock.
- Please perform wiring operation, remove the cover of product, or touch circuit board when it powers off. Otherwise, there is a risk of electric shock.
- Please ensure that devices and products are properly grounded; Otherwise, electric shocks might occur.

Alarm

- It's strictly prohibited to connect the input power to output of device or product; Otherwise, device might be damaged or even it starts a fire.
- When drive is connected to the motor, please ensure that the phase sequence of product and motor terminals are accurate and consistent so as to avoid reversing motor rotation.
- Cables used for wiring must meet the requirement on diameters and shielding, correspondingly. Shielding layer of shielded cables shall be reliably grounded at single end.
- Tighten terminal screws according to tightening torque specified in the manual. Insufficient or excessive tightening torque may cause overheating or damage to the connection, and even start a fire.

Safety precautions

 After wiring operation ends, ensure that all cables are properly connected and no screw, gasket or exposed wire are found inside the product. Otherwise, there might be a risk of electric shock or product damage.

Attention

- To avoid damage to the equipment or built-in circuit of product, follow the steps specified in ESD preventive measures and wear a wrist strap to handle wiring operation.
- For wiring of control loop, use double-stranded shielding cables to connect the shielding layer to grounding terminal of the product. Otherwise, it might cause abnormal actions of the product.

Power-on

Danger

- Before power-on, please make sure that the product is installed properly, the wiring is firm, and the motor is allowed to re-start.
- Before power-on, please make sure that power supply meets the product requirement to avoid product damage or starting a fire.
- It is strictly forbidden to open cabinet doors or protective cover plates of product, to touch any terminal of product, to disassemble any device or component of product in the power-on state. Otherwise, there is a risk of electric shock!

Alarm

- After wiring and parameter setting ends, please do a test run to ensure that the machine can operate safely. Otherwise, it might result in human injury or device damage.
- Before power-on, please make sure that the rated voltage of product is consistent with power supply voltage. If power supply voltage used was incorrect, there is a risk of fire.
- Before power-on, please make sure that no one is around the product, motor or motor. Otherwise, it might result in personal injury or death.

Operation

Danger

- It is strictly forbidden for non-professional personnel to operate the product, otherwise it might lead to personal injury or death!
- It is strictly forbidden to touch any terminal of the equipment, to disassemble any device or component of the equipment and product during operation, otherwise there is a risk of electric shock!

Alarm

- Do not touch the device shell, fan or resistor to test the temperature, otherwise it may cause burns!
- During operation, prvent other articles or metal objects from falling into the equipment, otherwise it might start a fire or cause product damage!

Maintenance

Danger

- It's strictly prohibited for non-professional personnel to perform equipment installation, wiring, maintenance, inspection or part replacement!
- It is strictly prohibited to perform equipment maintenance in the power-on state, otherwise there is the risk of electric shock!
- After powering off all the equipment, wait at least the period specified on the Alarm label before maintenance.
- When using a motor, even if the product is powered off, induced voltage can be generated on motor terminals during motor rotation. Do not touch any terminal of motors, otherwise there may be a risk of electric shock.

Alarm

 Please perform daily and routine check and maintenance of the equipment and products according to the maintenance requirement, and make the maintenance records.

Repair

Danger

- It's strictly prohibited for non-professional personnel to perform equipment installation, wiring, maintenance, inspection or part replacement!
- It is strictly prohibited to perform maintenance in power-on state, otherwise there is a risk of electric shock!
- After powering off all devices, please wait at least the period specified in the Alarm label before checking or maintaining.

Alarm

- Please repair the equipment according to the product warranty.
- When fuse burn-out, circuit breaker trip or ELCB trip, wait at least the period specified on the Alarm label before powering on or operating the machine. Otherwise, it may cause personal injury or equipment damage.
- When the equipment is Errory or damaged, it is necessary for professional to troubleshoot and repair the equipment and products according to the maintenance guidance, and make a repair record.
- Please replace in accordance with the instructions for replacing consumable parts.
- Do not use the machine damaged, otherwise it might cause casualties or further damage to products.
- After replacing the device, be sure to check the wiring and set parameters again.

Scrap

Alarm

- Please scrap the equipment and products in accordance with the relevant national regulations and standards to avoid property losses or human casualties!
- Scrapped equipment and products should be recycled in accordance with industrial waste treatment

Safety precautions

standards to avoid environmental pollution.

Chapter 1 Model selection and installation

1.1 Model Definition for Servo Drives

<u>SV3H</u> - <u>E</u> <u>S</u> <u>3R5</u> - <u>S</u> <u>G</u>

1 2 3 4 5 6

1	Product series	4	Rated cu	rrent	(5)	Safety function
	SV3H:SV3H series		Single/3-phase	1R6:1.6A		Vacancy: Standard model
	high-performance servo drive		220V	2R8:2.8A		S: Safe torque Off (STO) *2
				5R5:5.5A		
2	Communication method			7R6:7.6A	6	Custom function
	P: Pulse			012:12A		Vacancy: Standard model
	E:EtherCAT			014:14A*1		C: Full closed-loop function
	C:CANopen		3-phase 220V	018:18A*1		G: Gantry function
	F:Profinet			022:22A*1		A: Analog interface *3
	R:RS485			027:27A*1		
			3-phase 380V	3R5:3.5A		
				5R4:5.4A		
				8R4:8.4A		
3	Voltage level			012:11.9A		
	S: Single/3-phase 220V			017:16.5A		
	U: 3-phase 220V			021:20.8A		
	T: 3-phase 380V			026:26A		

Note *1: S014, U018, U022, U027 models are coming soon.

^{*2:} STO is not supported for CANopen and RS485

^{*3:} Only Canopen and RS485 models are supported

1.2 Model Definition for Motors

1.2.1 SM3-M2 Series Servo Motor

SM3-M2 H 130 - S 85B 15C - N H 1 B 1

① ② ③ ④ ⑤ ⑥ ⑦ 8 ⑨ ⑩ ⑪

1	Product series	(5)	Rated power /W	9	Keyway type
	SM3-M2:SM3-M2 series motors		B:×10 C:×100 Example: 85B:850W		0: Round 1:Key way
2	Class of inertia A: Low inertia M: Medium inertia H: High inertia	6	Rated speed /rpm B:×10 C:×100 Example: 15C:1500rpm	10	Holding brake N: Without holding brake B: With holding brake
3	Flange size /mm 130:130 flange 180:180 flange	7	Encoder type M:17Bit absolute value of single turn N:17Bit absolute value of multiple turns P:23Bit absolute value of multiple turns	11)	Oil seal 0: Without oil seal 1: With oil seal
4	Voltage level S:AC220V	8	Interface type H: Aviation plug connector		

1.2.2 SM3-M3 Series Servo Motor

<u>SM3-M3</u> <u>H</u> <u>80</u> - <u>S</u> <u>75B</u> <u>30C</u> - <u>M</u> <u>T</u> <u>1</u> <u>N</u> <u>1</u>

1 2 3 4 5 6 7 8 9 10 11

1	Product series	5	Rated power /W	9	Keyway type
	SM3-M3:SM3-M3 series motors		B:×10 C:×100 Example: 75B:750W		0:Round 1:Key way
2	Class of inertia A: Low inertia M: Medium inertia H: High inertia	6	Rated speed /rpm B:×10 C:×100 For example, 30C:3000rpm	10	Holding brake N: Without holding brake B: With holding brake
3	Flange size /mm 40:40 Flange 60:60 flange 80:80 flange	7	Encoder type M:17Bit absolute value of single turn N:17Bit absolute value of multiple turns P:23Bit absolute value of multiple turns	11)	Oil seal 0: Without oil seal 1: With oil seal
4	Voltage level S:AC220V	8	Interface type T: connector type		

1.3 Specifications

1.3.1 Basic Parameters of the Model

Table 1-1 Basic parameters of the model

Table 1-1 Basic parameters of the model					
	Item		Description		
	Contro	ol mode	IGBT SVPWM control, sine wave current drive mode. 220V, 380V: single-phase or 3-phase full-wave rectification.		
		Usage/storage temperature *1	0~+40 °C/-20~+70°C		
		Use/store humidity	Less than 90%RH (no condensation)		
Basic		Vibration strength	4.9m/s ²		
specification	Environment	Impact strength	19.6m/s ²		
		Class of protection	IP20		
		Class of contamination	Class PD2		
		Altitude	The highest altitude is 5,000m. Derating is unnecessary for 1,000m or below; Derating rate is 1% per 100m rise above 1,000m. Please contact the manufacturer in case of altitudes over 2,000m.		
		Feedforward compensation	Support speed feedforward (0~100.0%) setting to eliminate following deviation		
Position	Performance	Command shaping	Support speed feedforward (0~100.0%) setting to eliminate		
control Mode	Frequency	Output pattern	Phase A, Phase B, Phase Z: differential output		
	division Output	Frequency division range	The motor rotates one circle, and the frequency can be divided into any pulse from 140 to 1,048,576.		
		Dynamic characteristics of current loop	2000H2(COMMand Signal: ±25%)		
Speed /Torque Control mode	D (Speed control range	from 0 to 12000rpm. In case of the requirement over 6000rpm, please contact the manufacturer.		
	Performance	Dynamic characteristics of speed loop	Step response: 562.5us(0~1000rpm) Frequency response: -3dB amplitude attenuation bandwidth, 1000Hz(command signal: ±500rpm) -90° phase shift bandwidth, 630Hz(command signal: ±500rpm);		
		Torque control	±2%		

		accuracy		
	Digital input signal		Functions can be configured: forward overrange switch, reverse overrange switch, origin switch, etc.	
I/O	Digital output signal		Functions can be configured: servo ready, zero speed signal, speed arrival, position arrival, positioning approach signal, torque limit, Alarm, servo Error, etc.	
	Electroni	c gear ratio	Built-in two sets of electronic gear ratio, support gear ratio switching function	
	Position limitation protection		Stop immediately while forward/reverse overrange switch operates.	
Support	Error detection		Overcurrent, overvoltage, undervoltage, overload, main circuit detection abnormal, radiator overheating, overspeed, encoder abnormal, parameter abnormal, etc.	
function	Display function		5-digit LED display, power indicator CHARGE	
	Vibration suppression		With 4 notch filters, 50Hz~5000Hz, all 4 notch filters can be adaptive setting.	
	Ease	e of use	Self-tuning, speed observer, model tracking	
	Debuggir	ng interface	MiniUSB	
	0	ther	Status display, alarm logging, JOG running, etc.	
	<u> Attention</u>			
Note *1: Install or store servo drives within this temperature range.				

1.3.2 Specifications of EtherCAT Communication

Table 1-2 EtherCAT communication specification

	Item	Specification
	Communication protocol	EtherCAT protocol
	Support service	CoE (PDO、SDO)
	Synchronous mode	DC-distributed clock
	Physical layer	100BASE-TX
	Transmission rate	100 MBit/s (100BASE-TX)
	Duplex mode	Full duplex
	Topological structure	Circular, linear
EtherCAT	Transmission medium	Shielded Category 5E cable or higher category
Basic	Transmission distance	Less than 100m between two nodes (good environment, good cable)
performance of slave station	Number of slave stations	Protocol support up to 65,535, the actual quantity is not more than 100 sets
	EtherCAT frame length	from 44 to 1498 bytes
	Process data	A single Ethernet frame has a maximum of 1,486 bytes.
	Synchronous jitter of 2 slave stations	< 1µs
	Refresh time	I/O of 1000 switching quantity is about 30μs; 100 servo shafts about 100μs; Define different refresh time for different interfaces.
	Communication bit error rate	10-10 Ethernet standard
	Fieldbus memory management unit	8
EtherCAT Configuration	Storage synchronization management unit	8
unit	Process data RAM	8K bytes
diffe	Distributed clock,DC	64-bit
	EEPROM capacity	32kBit Initialization data is written by EtherCAT master station

1.3.3 Electrical Parameters of Models

Table 1-3 Electrical specifications of 220V servo drives

Structural dimension	SIZ	EΑ	SIZE B		SIZE C			SIZE D	
Model SV3H	S1R6	S2R8	S5R5	S7R6	S012	S014*1	U018*1	U022*1	U027*1
Rated output current Arms	1.6	2.8	5.5	7.6	11.6	14.0	18	22	27
Maximum output current Arms	5.8	10.1	16.9	23.0	32.0	42.0	45.0	55.0	72.0
Rated input current Arms Main circuit power supply	Single-ph ase 2.3/ 3-phase 1.4	ase 4.0/ 3-phase 2.6 Single	Single-ph ase 7.9/ 3-phase 4.4 e/3-phase	ase 9.6/ 3-phase 5.6 AC 200V ~	ase 12.8/ 3-phase 8.0 240V,	ase 16.0/	18.7 3-phas	20.7 e AC 200V	
Power supply of control loop						L0%~+10%		<u> </u>	
Regenerative resistance	No built-in regenerative resistance as standard		50Ω/50W		25Ω/80W			20Ω/100W	1

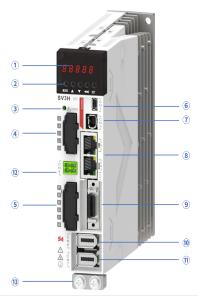
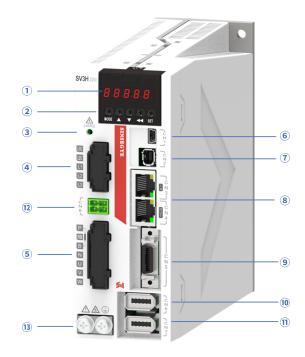
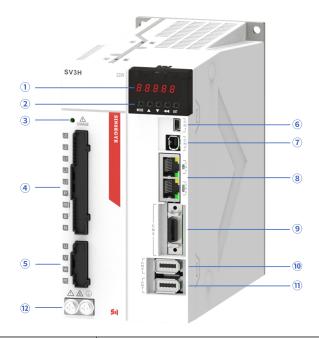

Note *1: S014/U018/U022/U027 models are coming soon.

Table 1-4 Electrical specifications of 380V servo drives

Structural dimension		SIZ	ZE C		SIZE D		
Model SV3H	T3R5	T5R4	T8R4	T012	T017	T021	T026
Rated output current Arms	3.5	5.4	8.4	11.9	16.5	20.8	26.0
Maximum output current Arms	11.0	14.0	20.0	29.8	41.3	52.1	65.0
Rated input current Arms	2.4	3.6	6.6	8.0	12.0	16.0	21.0
Main circuit power supply	3-phase AC380V~440V, -10%~+10%, 50/60Hz						
Power supply of control loop	Single-phase AC380V~440V, -10%~+10%, 50/60Hz						
Regenerative resistance	100Ω	/80W	50Ω/	/80W		35Ω/100W	


1.4 Description on Components

1.4.1 SIZE A Frame


ID	Name	Remarks
1	Nixie tube display	5 digit 7 segment LED digital tube
2	Key-type operator	Operation mode, with settings of functions, parameters and monitoring
3	CHARGE(Bus voltage indicator)	Power indicator light
(4)	L1C, L2C(Control power input terminal)	Power supply of control loop, connected to single-phase power supply (AC200~240V,50/60Hz power supply)
•	L1, L2, L3(Main power input terminal)	Power supply of main loop, connected to single/3-phase power supply (AC200~240V,50/60Hz power supply)
	P/B(Regenerative resistor connection terminal)	P/B are connected to external regenerative resistors
(5)	P/N(common DC bus terminal)	Common DC bus for multiple servos
	U/V/W(servo motor connection	Servo drive output, connected to motor power connector
	terminal)	(U/V/W)
6	CN1(Mini USB)	Mini USB connector, connected to PC
7	CN2(Connector for safety function)	STO connector, only 'P/E/F' models support this option
8	CN3/CN4(Communication terminal)	EtherCAT high-speed communication port
9	CN5(I/O Connector)	I/O signals are connected to programmable controller (PLC) or control I/O with connectors
10	CN6(Encoder connector)	Encoder connector, connected to the encoder on servo motor
(II)	CN7(Fully Closed Loop Encoder	Fully closed loop connector, connected to th external second
11)	Connector)	encoder. This function is supported by '-*C/*G' models
12	CN8(Reserved)	Reserved interface
13	Ground screw	Connect to earth wires of power supply and motors

1.4.2 SIZE B Frame

ID	Name	Remarks
1	Nixie tube display	5 digit 7 segment LED digital tube
2	Key-type operator	Operation mode, with settings of functions, parameters and monitoring
3	CHARGE(Bus voltage indicator)	Power indicator light
(4)	L1C, L2C(Control power input terminal)	Power supply of control loop, connected to single-phase power supply (AC200~240V,50/60Hz power supply)
4	L1, L2, L3(Main power input terminal)	Power supply of main loop, connected to single/3-phase power supply (AC200~240V,50/60Hz power supply)
	P, RB, B(Regenerative resistor connection terminal)	Use external regenerative resistor(remove the shorting cap of P and RB; Connect it to both ends of P and B)
(5)	P/N(common DC bus terminal)	Common DC bus for multiple servos
	U/V/W(servo motor connection terminal)	Servo drive output, connected to motor power connector (U/V/W)
6	CN1(Mini USB)	Mini USB connector, connected to PC
7	CN2(Connector for safety function)	STO connector, only 'P/E/F' models support this option
8	CN3/CN4(Communication terminal)	EtherCAT high-speed communication port
9	CN5(I/O Connector)	I/O signals are connected to programmable controller (PLC) or control I/O with connectors
10	CN6(Encoder connector)	Encoder connector, connected to the encoder on servo motor
11)	CN7(Fully Closed Loop Encoder Connector)	Fully closed loop connector, connected to th external second encoder. This function is supported by '-*C/*G' models
(12)	CN8(Reserved)	Reserved interface
13	Ground screw	Connect to earth wires of power supply and motors

1.4.3 SIZE C Frame

ID	Name	Remarks
1	Nixie tube display	5 digit 7 segment LED digital tube
2	Key-type operator	Operation mode, with settings of functions, parameters and monitoring
3	CHARGE(Bus voltage indicator)	Power indicator light
	L1C, L2C(Control power input terminal)	Control power supply of loop, connect to single phase power supply(depending on model 200~240VAC or 380~440VAC, 50/60Hz power supply)
4	L1, L2, L3(Main power input terminal) R/S/T(Main power input terminal)	Main loop power supply, connect to single/three phase power supply(depending on model 200~240VAC or 380~440VAC, 50/60Hz power supply)
	P, RB, B(Regenerative resistor connection terminal)	Use external regenerative resistor(remove the shorting cap of P and RB; Connect it to both ends of P and B)
	P/N(common DC bus terminal)	Common DC bus for multiple servos
(5)	U/V/W/PE(servo motor connection terminal)	Servo drive output, connected to motor power connectors(U/V/W/PE)
6	CN1(Mini USB)	Mini USB port, connected to PC
7	CN2(Connector for safety function)	STO connector, only 'P/E/F' models support this option
8	CN3/CN4(Communication terminal)	EtherCAT high-speed communication port
9	CN5(I/O Connector)	I/O signals are connected to programmable controller (PLC) or control I/O with connectors
10	CN6(Encoder connector)	Encoder connector, connected to the encoder on servo motor
11)	CN7(Fully Closed Loop Encoder Connector)	Fully closed loop connector, connected to th external second encoder. This function is supported by '-*C/*G' models
12	Ground screw	Connect to earth wires of power supply and motors

1.4.4 SIZE D Frame

ID	Name	Remarks
1	Nixie tube display	5 digit 7 segment LED digital tube
2	Key-type operator	Operation mode, with settings of functions, parameters and monitoring
3	CHARGE(Bus voltage indicator)	Power indicator light
	L1C, L2C(Control power input terminal)	Control power supply of loop, connect to single phase power supply(depending on model 200~240VAC or 380~440VAC, 50/60Hz power supply)
	R/S/T(Main power input terminal)	Main loop power supply, connect to single/three phase power supply(depending on model 200~240VAC or 380~440VAC, 50/60Hz power supply)
4	P, RB, B(Regenerative resistor connection terminal)	Use external regenerative resistor(remove the shorting cap of P and RB; Connect it to both ends of P and B)
	P/N1/N2(Common DC bus terminals)	Do not remove the shorting cap between N1 and N2. Connect it between P and N1 for common DC bus of multiple servos
	U/V/W(servo motor connection terminal)	Servo drive output, connected to motor power connector (U/V/W)
(5)	CN1(Mini USB)	Mini USB port, connected to PC
6	CN2(Connector for safety function)	STO connector, only 'P/E/F' models support this option
7	CN3/CN4(Communication terminal)	EtherCAT high-speed communication port
8	CN5(I/O Connector)	I/O signals are connected to programmable controller (PLC) or control I/O with connectors
9	CN6(Encoder connector)	Encoder connector, connected to the encoder on servo motor
10	CN7(Fully Closed Loop Encoder Connector)	Fully closed loop connector, connected to th external second encoder. This function is supported by '-*C/*G' models
11)	Ground screw	Connect to earth wires of power supply and motors

1.5 Installation of Drives

1.5.1 Installation Site

Table 1-5 Drive installation sites

Please install in an electric control cabinet free from sunshine and rain
Do not use this product in corrosive environment with hydrogen sulfide, chlorine gas, ammonia, sulfur,
chlorinated gas, acid, alkali, salt
Do not use this product in the presence of flammable gases or near the combustible
Do not install in an environment with high temperature, humidity, dust, or metal dust
Vibration-free site
Installation site contamination level: PD2

1.5.2 Environmental Conditions

Table 1-6 Environment conditions of drive installation

Item	Description
Operating ambient temperature	0~+40°C
Ambient humidity	Less than 90%RH (no condensation)
Storage temperature	-20~70°C(non-freezing)
Storage humidity	Less than 90%RH (no condensation)
Vibration	Below 4.9m/s2
Impulse	Below 19.6m/s2
Class of protection	IP20 Note: Except Terminal (IP00)
	The highest altitude is 5,000m. Derating is unnecessary for 1,000m
Altitude	or below; Derating rate is 1% per 100m rise above 1,000m. Please
	contact the manufacturer in case of altitudes over 2,000m.

1.5.3 Installation Dimensions

1.5.3.1 SIZE A frame

Approx. weight: 0.77kg.

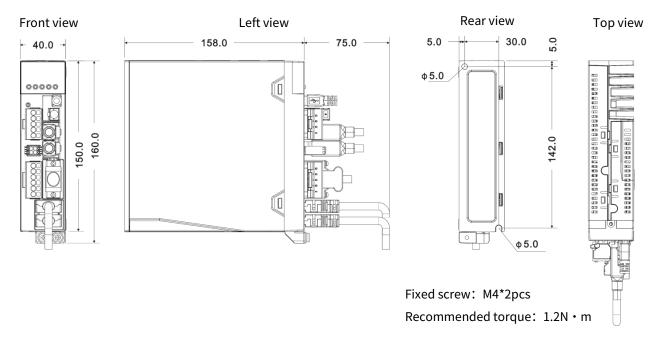


Figure 1-1 Appearance of SV3H SIZE A

1.5.3.2 SIZE B frame

Approx. weight: 1.10kg.

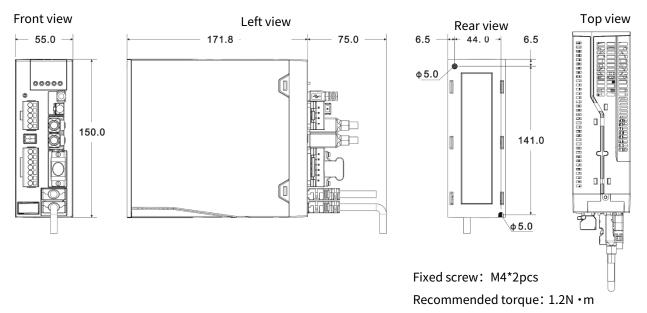


Figure 1-2 Appearance of SV3H SIZE B

1.5.3.3 SIZE C frame

Approx. weight: 1.75kg.

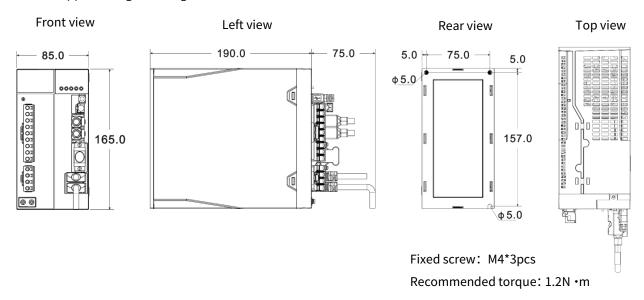
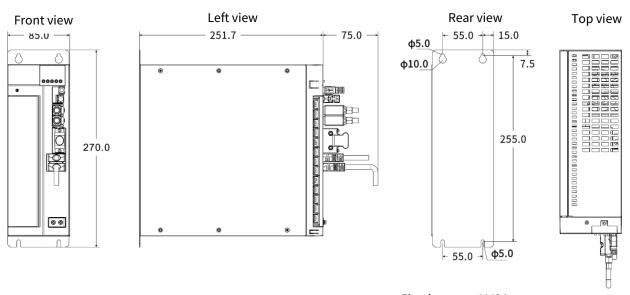



Figure 1-3 Appearance of SV3H SIZE C

1.5.3.4 SIZE D frame

Approx. weight: 2.58kg.

Fixed screw: M4*4pcs

Recommended torque: 1.2N · m

Figure 1-4 Appearance of SV3H SIZE D

1.5.4 Installation Precautions

7Table 1-7 Notes for drive installation

Trable 1-1 Notes for drive installation			
Installation requirements	Ensure that mounting direction is perpendicular to the wall(drive mounting face is 90° from the bottom surface, vertically upward). Use natural convection or fan to cool servo drives. It is firmly fixed on mounting face through mounting holes of servo drive. Screws and torque used for installation see the above figure. While installing, the front of drive faces operational personnel for easy operation and maintenance.		
The requirement for heat radiation	To ensure the heat radiation of drives, please design the heat radiation solution of control cabinet according to the following figure. Please install a cooling fan on the top of servo drive to ensure that temperature of servo drive is uniform without local overheat.		
Space requirement	For installation with the spacing reserved, it's recommended to leave the transverse spacing more than 10mm on both sides of the drive and the longitudinal spacing more than 50mm on both sides of the drive. For compact installation, it's recommended to leave the transverse spacing more than 1mm on both sides of the drive and the longitudinal spacing more than 50mm on both sides of the drive. Here, please derate the rated load ratio to 75%.		

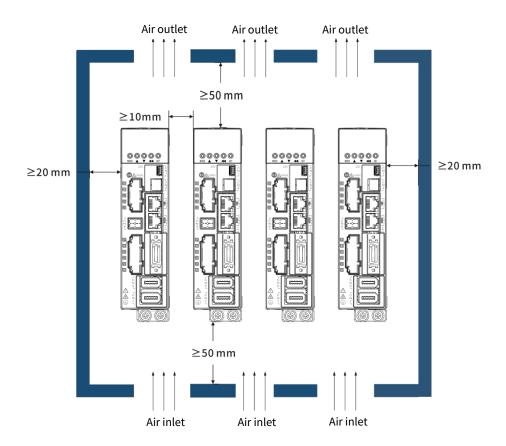


Figure 1-5 Servo drive installation diagram (for the spacing is reserved)

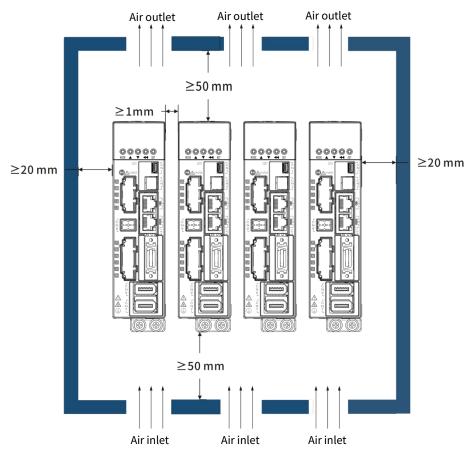


Figure 1-6 Servo drive installation diagram (for compact installation)

1.5.5 Grounding

Please ensure to ground the grounding terminal, otherwise there might be a risk of electric shock or misoperation from intreference.

For details on electrical ground, see 2.9 Grounding and anti-interference Measures.

1.5.6 Wiring Requirements

When connecting cables to the driver, route the cables downward (see the following figure) to prevent any liquid from flowing into drives that might cause damage.

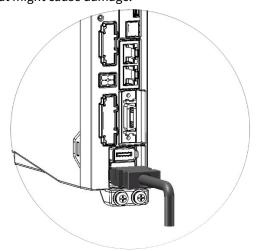


Figure 1-7 Requirement for servo drive routing

1.6 Motor Installation

1.6.1 Installation Site

Table 1-8 Installation site of motors

Please install motors in a room free from rain and direct sunlight.

Do not use this product in corrosive environment with hydrogen sulfide, chlorine gas, ammonia, sulfur, chlorinated gas, acid, alkali, salt, etc.

Do not use this product in the presence of flammable gases or near the combustible.

Places without cutting fluid, oil mist, iron powder, and iron filings.

Places in good ventilation, no moisture or oil or water intrusion, away from furnace and other heat sources.

Vibration-free place.

Place for easy inspection and cleaning.

Do not use a motor in the enclosed environment which will cause high temperature of motor and shorten the service life.

1.6.2 Environment Conditions

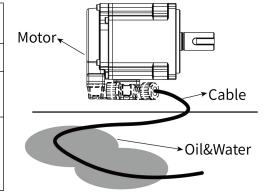
Table 1-9 Environmental conditions for motor use

Item		Description		
Operating ambient temperature	0 ~ +40 °C			
Ambient humidity	Less than 90%RH (no	condensation)		
Storage temperature	-20~70°C(non-freezing	-20~70°C(non-freezing)		
Storage humidity	Less than 90%RH (no	condensation)		
Vibration	Only for motor	Below 49 m/s2 when rotating, below 24.5m /s2 when stopping		
Impulse	Only for motor	Below 98 m/s2		
Class of	Connector-type motor	IP67(The cable used is specified, except for connection pins of output shaft rotation, motor connector, encoder connector)		
protection	Wire-type motor	IP65(except for connection pins of output shaft rotation, motor connector, encoder connector)		
Altitude	The highest altitude is 5,000m. Derating is unnecessary for 1,000m or below; Derating ra 1% per 100m rise above 1,000m. Please contact the manufacturer in case of altitudes ov 2,000m.			

1.6.3 Installation Methods

Motor can be installed vertically or horizontally, but the following requirements must be followed.

Installation mode	Notes			
Horizontal	Put cable outlet facing down to avoid oil and water infiltration inside motor.			
installation				
Vertical installation	When a motor with reducer is installed axially, please use the motor with oil seal to			
	avoid reducer oil seeping inside motor.			


1.6.4 Protection Countermeasures for Oil and Water

Do not immerse the cable into oil or water, or use the special oil-proof cable

Set the cable outlet downwards.

Do not use in the environment where oil/water often splashes on motor body.

When equipped with a reducer, please use the motor with oil seal so as to avoid the oil seeping from shaft extension into motor.

1.6.5 Cable stress

- ① Do not stress the lead-in part and connection part of cable due to bending and self-weight.
- ② Particularly, when move motors and use a trunk cable that can be stored in cable tray, it shall minimize the bending stress of cable.
- ③ Try to increase the bending radius of cable.

1.7 Drag chain installation cable

High-flex rag chain dcable plays an important role in signal, control and power transmission of the equipment. High-flex drag chain cable must be synchronized with other components in carrier. Furthermore, it must take care of installation and protection of high-flex drag chain cable in carrier particularly. Stable and effective use with a long service life depends on accurate installation.

1. Ensure that cable is completely free to move within the bending radius, i.e., the cable can move relative to each other and to guide device without any forced movement. When high-flex cable is routed in carrier, it can neither be too loose, nor too tight: the former might cause cable to bend and twist in carrier so as to affect its service life; The latter might lead in greater friction between the cable and inner wall of carrier so as to cause cable sheath wear and tear, and increase radial force of cable, as well as cable distortion that affects the service life.

Cable fixture must be mounted at both ends of cable carrier, and the fixing point can't be moved; The distance from the end of bending curve to the fixture shall be as large as possible, in general, greater than 20 to 30 times cable diameter.

It's forbidden to fix the high-flex drag chain cable in any moving part of cable carrier, or bundle the cables in cable carrier together, that would hinder the absorption and dispersion capability of cable for bending stress, and would affect the service life.

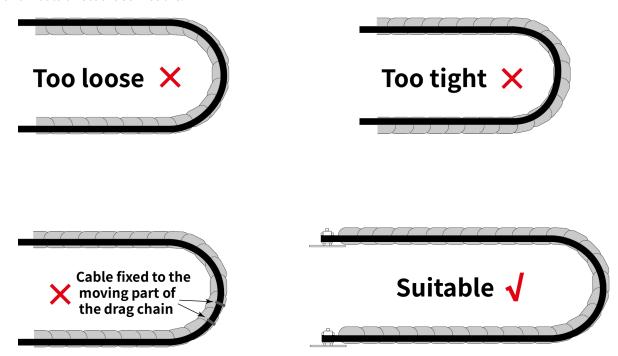
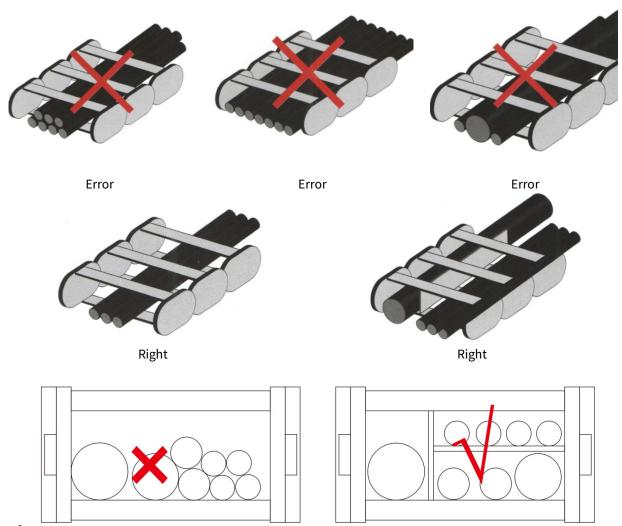


Figure 1-8 Installation status of cables in the drag chain

2. As for wiring of the high-flex cable in carrier, the cable should be laid side by side in the support of carrier as far as possible. There must be a certain gap between two adjacent cables; The gap betwee cables in carrier shall be at least 10% of cable diameter.

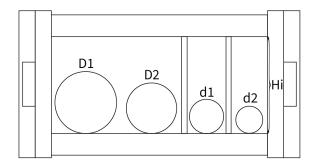

Avoid multi-layer routing of cable(i.e., avoid arranging one cable on another without using a spacer). If the space is limited and it need place one cable on another, it must utilize a spacer or shelves!

If there is a large difference in diameter of cables, and the diameter difference of cables is greater than 20% wiring size, it is necessary to utilize a partition between two cables to avoid the play of cables or winding each other.

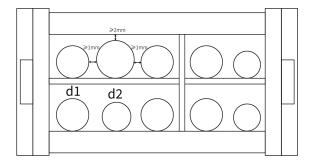
The filling coefficient of cables in carrier should be controlled below 60% (less than 30% is more ideal). In order to ensure the balance of cable carrier in motion, the weight of the cable distributed on carrier should be as balanced as possible; It's recommended that the heavier cable be located on both sides and the lighter one be located in the middle.

Note: A: After a period of operation, periodically check the position of cable; The check must be performed

after any push/pull movement; If there is any displacement, it shall be improved and adjusted in time. B: For vertically suspended cable carrier, there must be more free space inside the bracket, because the cable will be stretched during operation due to gravity. After a period of operation and use, regularly check the length and position of cable; The check must be performed after any push/pull movement; If there is any displacement, it shall be improved and adjusted in time.


3. If cable carrier is damaged or broken, the cable also needs to be replaced, because damages from excessive stretching can't be prevented or repaired.

- 4. Bending radius of the flexible cable used in cable carrier should conform to technical parameters in the product specification.
- 5. After a period of operation, regularly check the position of cable, and often confirm that the cable can follow the carrier movement without any force; The inspection must be performed after push-pull movement; If any displacement or force exists, it shall be improved and adjusted in time.
- 6. To lay multi-core high-flexible cables with a diameter less than 10mm, it's recommended to use a guide duct.
- 7. For freely moving pipes, guide duct or partition should be mounted.
- 8. Adjacent cables can't cross over each other, so the gap over cable should not be greater than 50% of the diameter of adjacent cables.


The rules below must be followed:

Rule 1: If D1+D2>1.2 times the inner height of cable carrier, it's unnecessary to separate the two cables. The cables can't cross over or wrap each other (shown as below).

Rule 2: If D1+D2<1.2 times the inner height of cable carrier, separator must be used to reduce the gap (shown as below).

D1+D2>1.2×Hi d1+d2≤1.2×Hi

d1+d2≤1.2×Hi

Chapter 2 Wiring

2.1 Description on System Wiring

2.1.1 SIZE A overall wiring

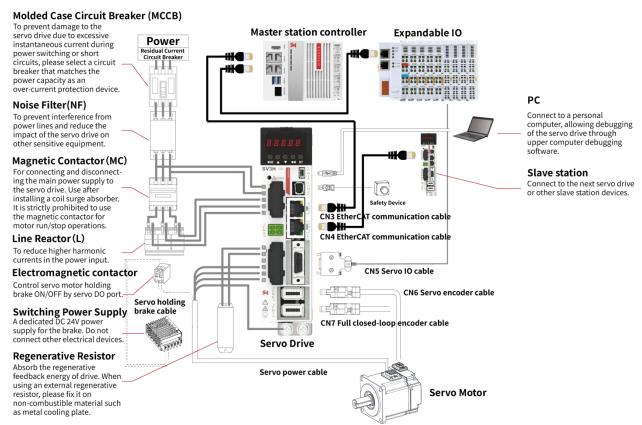


Figure 2-1 SV3H SIZE A wiring diagram

- As for single-phase power input, power supply can be connected to any 2 terminals of L1/L2/L3.
- Please use a circuit breaker with leakage protection and noise filter between power supply and the main power terminal;
- Voltage and power of holding brake power supply should meet the requirement on parameters of motor holding brake.
- SIZE A has no built-in regenerative resistor, in case of the application with external regenerative resistor, please select the appropriate resistance. It can't be less than the allowable minimum external resistance, otherwise it might cause damage to the driver.
- CN3 is the EtherCAT communication input, connected to the controller or the previous servo; CN4 is the EtherCAT communication output, connected to the next servo.

2.1.2 SIZE B overall wiring

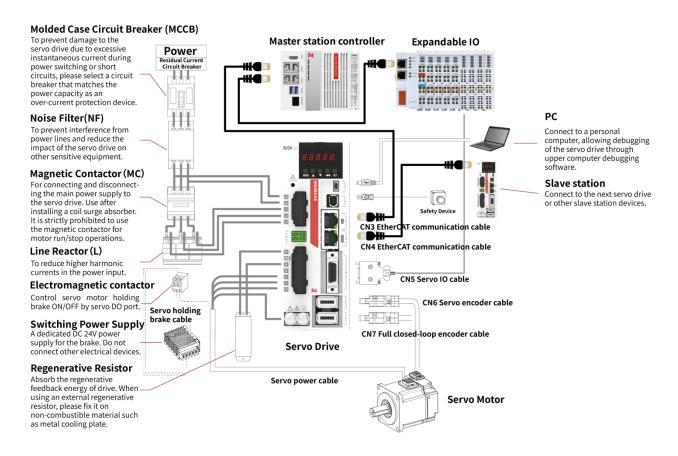


Figure 2-2 SV3H SIZE B wiring diagram

- As for single-phase power input, power supply can be connected to any 2 terminals of L1/L2/L3.
- Please use a circuit breaker with leakage protection and noise filter between power supply and the main power terminal;
- Voltage and power of holding brake power supply should meet the requirement on parameters of motor holding brake.
- SIZE B has the built-in regenerative resistor, in case of the application with external regenerative resistor, please select the appropriate resistance. It can't be less than the allowable minimum external resistance, otherwise it might cause damage to the driver. Remove jumper bar between P and RB, connect it to both ends of P and B.
- CN3 is the EtherCAT communication input, connected to the controller or the previous servo; CN4 is the EtherCAT communication output, connected to the next servo.

2.1.3 SIZE C overall wiring

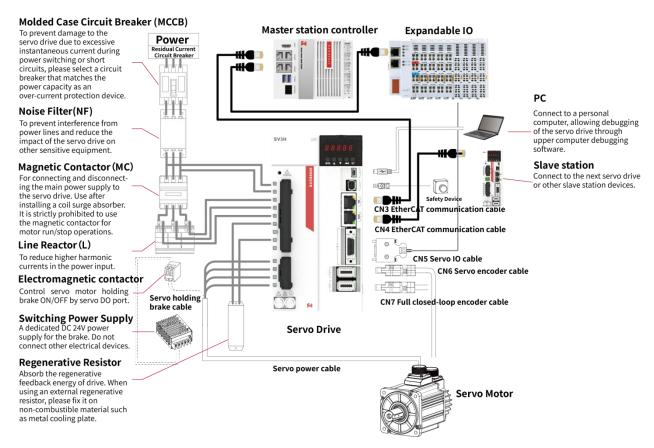


Figure 2-3 SV3H SIZE C system wiring diagram

- SIZE-C has 2 models: 220VAC and 380VAC. Please select the power supply voltage upon the actual model and specification. Wrong power supply may cause drive damage.
- As for single-phase power input, power supply can be connected to any 2 terminals of L1/L2/L3.
- Please use a circuit breaker with leakage protection and noise filter between power supply and the main power terminal;
- Voltage and power of holding brake power supply should meet the requirement on parameters of motor holding brake.
- SIZE C has the built-in regenerative resistor, in case of the application with external regenerative resistor, please select the appropriate resistance. It can't be less than the allowable minimum external resistance, otherwise it might cause damage to the driver. Remove jumper bar between P and RB, connect it to both ends of P and B.
- CN3 is the EtherCAT communication input, connected to the controller or the previous servo; CN4 is the EtherCAT communication output, connected to the next servo.

2.1.4 SIZE D overall wiring

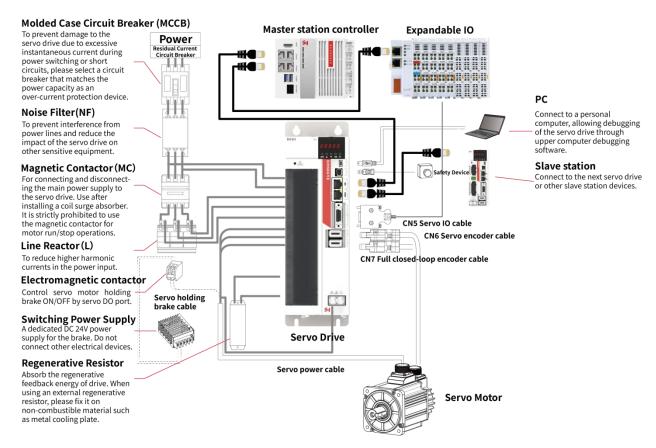
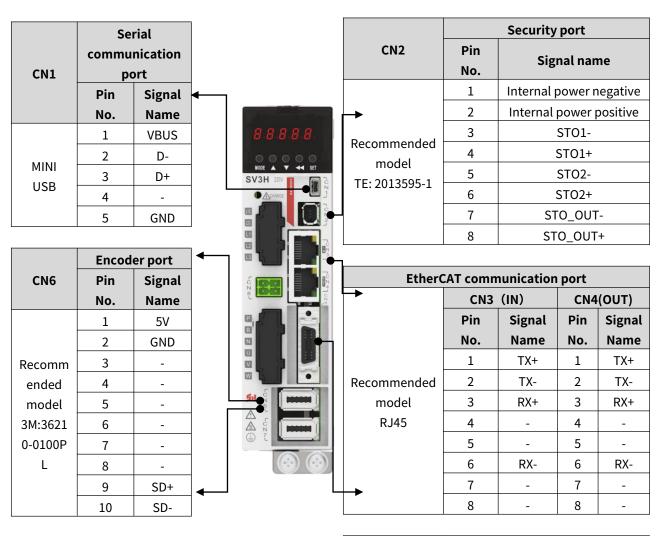



Figure 2-4 SV3H SIZE D wiring diagram

- Please use a circuit breaker with leakage protection and noise filter between power supply and the main power terminal;
- Voltage and power of holding brake power supply should meet the requirement on parameters of motor holding brake.
- SIZE D has the built-in regenerative resistor, in case of the application with external regenerative resistor, please select the appropriate resistance. It can't be less than the allowable minimum external resistance, otherwise it might cause damage to the driver. Remove jumper bar between P and RB, connect it to both ends of P and B.
- CN3 is the EtherCAT communication input, connected to the controller or the previous servo; CN4 is the EtherCAT communication output, connected to the next servo.

2.2 Servo Drive Port Definition

	Second	encoder
CN7	po	ort
CIVI	Pin	Signal
	No.	Name
	1	5V
	2	GND
	3	SEC_A+
Recomm	4	SEC_A-
ended	_	SEC_B
model	5	+
3M:3621	6	SEC_B-
0-0100P	7	SEC_Z+
L	8	SEC_Z-
	9	-
	10	MTR_T
	10	EMP

	С	Control signal port						
CN5	Pin	Signal	Pin	Signal				
	No.	Name	No.	Name				
	1	DO1+	11	DI6				
	2	DO1-	12	HDI1				
	3	DO3+	13	HDI2				
D	4	DO3-	14	DO2+				
Recommended	5	DI1	15	DO2-				
model SCSI-20P	6	DI_COM	16	GND				
3C3I-20P	7	DI2	17	PAO+				
	8	DI3	18	PAO-				
	9	DI4	19	PBO+				
	10	DI5	20	PBO-				

Figure 2-5 Servo Drive Port Definition

2.3 Definition and wiring description of power terminals

2.3.1 Definition of power supply and motor terminals

Table 2-1 Definition of SIZE A main loop ports

Table 2-1 Definition of SIZE A main loop ports						
Port		Port	Port	Port		
classification	Connector	No.	Code	function	Content	
			L1C	Control	Single-phase AC200V ~ 240V, -10 ~ +10%,	
	L1C O 1	2	L2C	power input	50/60Hz	
Power input	L2C 0 2 L1 0 3	3	L1			
	L2	4	L2	Main power input	Single-phase/3-phase AC200V ~ 240V, -10 ~ +10%, 50/60Hz	
		5	L3			
		1	Р	Regenerativ	When the regeneration function is used, use Port P/B, as detailed in Section 2.5.	
			2	В	e function and DC bus	For common DC bus applications, use P (DC+)/N (DC-) terminals, as described in
Power output	P ₁ 0 1 2	3	N	terminals	Section 2.4.	
Fower output	N 0 4 V 5	4	U			
	w 6 6	5	V	Motor drive	Connect U/V/W three phases of the servo motor.	
		6	W			

Table 2-2 Definition of SIZE B main loop ports

Table 2-2 Definition of SIZE B main loop ports						
Port	Connector	Port	Port	Port	Content	
classification	Connector	No.	Code	function	Content	
		1	L1C	Control	Single-phase AC200V ~ 240V, -10 ~	
	L1C O 1	2	L2C	power input	+10%, 50/60Hz	
Powerinput	L2C	3	L1			
	L3 5	4	L2	Main power input	Single/3-phase AC200V ~ 240V, -10 ~ +10%, 50/60Hz	
		5	L3			
		1	Р		When the regeneration function is used, use Port P/RB/B, as detailed in	
		2	RB	Regenerative function and	Section 2.5.	
	P 7 0 1 RB 1 2	3	В	DC bus terminals	For common DC bus applications, use P (DC+)/N (DC-) terminals, as	
Power output	B J 0 3 N 0 4 U 5	4	N		described in Section 2.4.	
V	v 4 0 6	5	U			
		6	V	Motor drive	Connect U/V/W three phases of the servo motor.	
		7	W			

Table 2-3 Definition of SIZE C main loop ports

	Та	ble 2-3	Definition of SIZE C main loop ports			
Port	Connector	Port	Port	Port	Content	
classification		No.	Code	Functions		
		1	L1C	Control	220V model: single-phase 200V~240VAC,	
				power	-10 ~ +10%, 50/60Hz	
		2	126	supply	380V model: single-phase 380V~440VAC,	
		2	L2C	Input	-10 ~ +10%, 50/60Hz	
	L1C O	_		·		
	L2C Q	3	L1/R		220V model: single/3-phase	
	L1/R O			Main power	200V~240VAC, -10 ~ +10%, 50/60Hz	
	L3/T	4	L2/S	input	380V model: 3-phase 380V~440VAC, -10 ~	
	. P Q				+10%, 50/60Hz	
Power input RB RB	5	L3/T				
	B O					
		6	P		When the regeneration function is used,	
		_		Regenerative	use Port P/RB/B, as detailed in Section	
		7	RB	function and	2.5.	
				DC bus	F	
		8	В	terminals	For common DC bus applications, use P	
					(DC+)/N (DC-) terminals, as described in	
		9	N		Section 2.4.	
		1				
		1	U			
	U - O 1	2	V			
Power output	V O 2		V	Motor drive	Connect U/V/W three phases and earth	
Power output	W Q 3	3	w	Motor drive	PE terminal of servo motor.	
	PE 0 4	J	VV			
		4	PE			
		7	' -			

Port Port Port Connector **Remarks** No. Code function L1C 1 Control Single-phase 380V~440VAC, -10 ~ +10%, 50/60Hz power input 2 L2C 3 R L1C Main power L2C S 2 4 3-phase 380V~440VAC, -10 ~ +10%, 50/60Hz input R 3 5 Т S 4 T 5 U 6 U 6 7 ٧ Motor drive Connect U/V/W three phases of the servo motor. 7 ٧ 8 W 8 W 9 N2 When the regeneration function is used, use Port N1 10 9 N2 P/RB/B, as detailed in Section 2.5. 11 Ρ Regeneration 10 N1 12 RB For common DC bus applications, use P (DC+)/N2 function, 13 Common DC (DC-) terminals, as described in Section 2.4. В Ρ 11 bus port, N1/N2 are shorted by deError. It shall suppress external RB 12 high-order harmonics of power supply, remove reactance the short-circuit wire and connect DC reactance 13 В

Table 2-4 Definition of SIZE D main loop ports

2.3.2 Wiring of circlip terminals

Power terminal is circlip connector for quick wiring. During wiring, perform the following process to ensure reliable connection.

between N1 and N2.

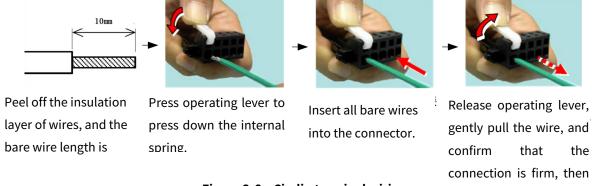


Figure 2-6 Circlip terminal wiring

2.3.3 Wiring of the Main Circuit

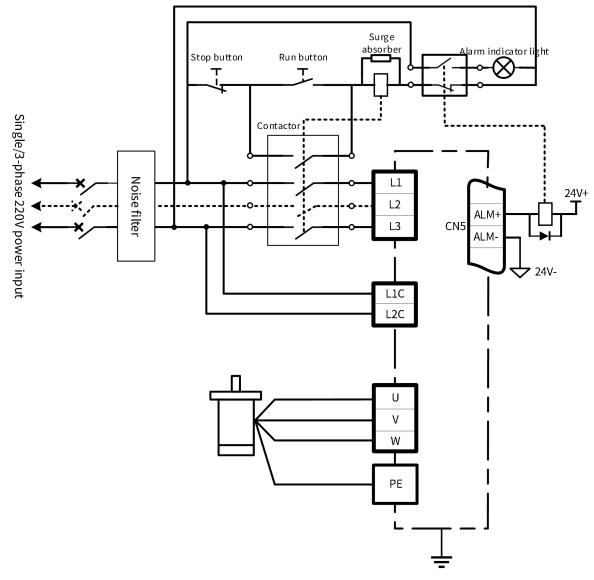


Figure 2-7 SIZE A main circuit wiring

- Do not connect power supply input (L1/L2/L3) to output terminal (U/V/W) for motor;
- Wiring of motor output terminal(U/V/W) is consistent with motor (U/V/W) wiring; The sequence can't be wrong;
- Do not put power cable and signal cable together, and keep a distance more than 30cm.
- Do not switch servo power supply frequently; Otherwise, capacitor will be charged frequently inside the servo, and pre-charging circuit will be overloaded, resulting in performance degradation. Please keep switching frequency below 1 time per minute;
- After the servo is powered off, there might still be residual high voltage inside servo. Only after power-off for 15 minutes and wait until the power indicator is off, can the wiring be executed.

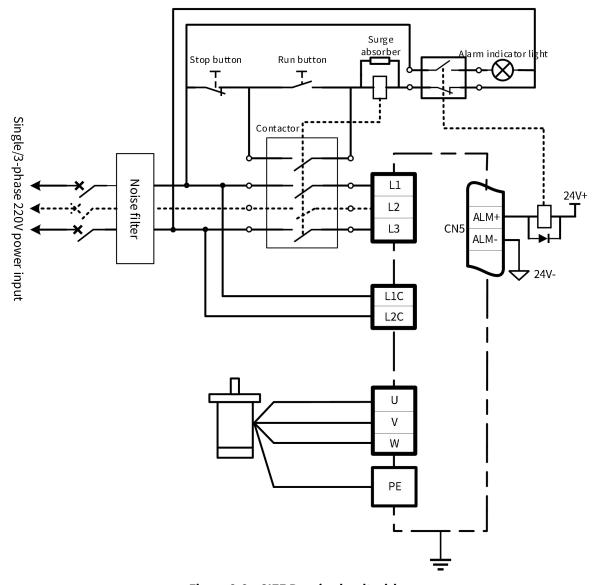


Figure 2-8 SIZE B main circuit wiring

- Do not connect power supply input (L1/L2/L3) to output terminal (U/V/W) for motor;
- Wiring of motor output terminal(U/V/W) is consistent with motor (U/V/W) wiring; The sequence can't be wrong;
- Do not put power cable and signal cable together, and keep a distance more than 30cm.
- Do not switch servo power supply frequently; Otherwise, capacitor will be charged frequently inside the servo, and pre-charging circuit will be overloaded, resulting in performance degradation. Please keep switching frequency below 1 time per minute;
- After the servo is powered off, there might still be residual high voltage inside servo. Only after power-off for 15 minutes and wait until the power indicator is off, can the wiring be executed.

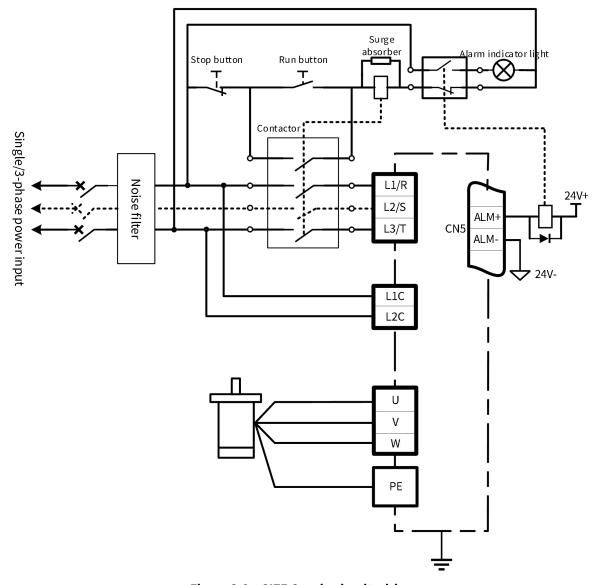


Figure 2-9 SIZE C main circuit wiring

- Do not connect power supply input (L1/R, L2/S, L3/T) to output terminal (U/V/W) of motor;
- Wiring of motor output terminal(U/V/W) is consistent with motor (U/V/W) wiring; The sequence can't be wrong;
- Do not put power cable and signal cable together, and keep a distance more than 30cm.
- Do not switch servo power supply frequently; Otherwise, capacitor will be charged frequently inside the servo, and pre-charging circuit will be overloaded, resulting in performance degradation. Please keep switching frequency below 1 time per minute;
- After the servo is powered off, there might still be residual high voltage inside servo. Only after power-off for 15 minutes and wait until the power indicator is off, can the wiring be executed.

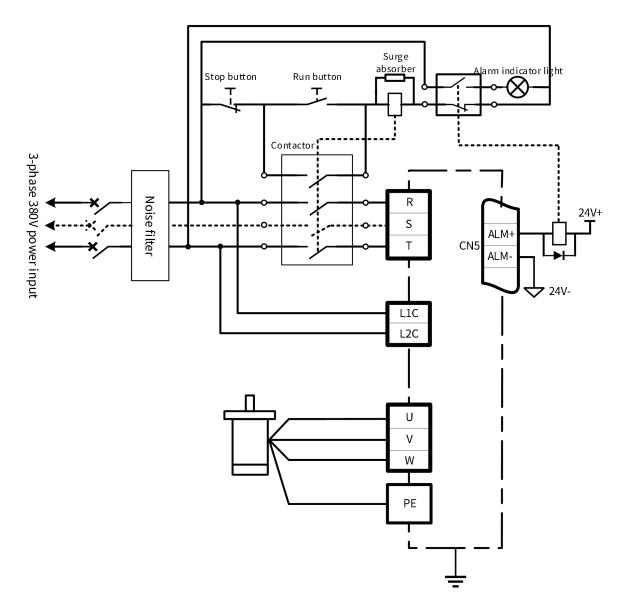


Figure 2-10 SIZE D main circuit wiring

- Do not connect the power input (R, S, T) to the output terminal (U, V, W) of motor;
- Wiring of motor output terminal(U/V/W) is consistent with motor (U/V/W) wiring; The sequence can't be wrong;
- Do not put power cable and signal cable together, and keep a distance more than 30cm.
- Do not switch servo power supply frequently; Otherwise, capacitor will be charged frequently inside the servo, and pre-charging circuit will be overloaded, resulting in performance degradation. Please keep switching frequency below 1 time per minute;
- After the servo is powered off, there might still be residual high voltage inside servo. Only after power-off for 15 minutes and wait until the power indicator is off, can the wiring be executed.

2.3.4 Specification of Main Loop Cable

Table 2-5 Recommended cable specifications for main loop

Frame	Drive	Table 2-5		L1、L2	L1、L2、L3 (R、S、T)		115 101 1	main loop U、V、		PE	
	Model	mm ²	AWG	mm ²	AWG	mm ²	AWG	mm ²	AWG	mm ²	AWG
			Sir	ngle-phase	e 220V	power supp	oly				
SIZE A	S1R6	2x0.5	20	2x0.5	20	2x2.0	14	3x0.5	20	0.5	20
SIZEA	S2R8	2x0.5	20	2x0.5	20	2x2.0	14	3x0.5	20	0.5	20
SIZE B	S5R5	2x0.75	18	2x0.75	18	2x2.0	14	3x0.75	18	0.75	18
	S7R6	2x0.75	18	2x1.5	15	2x2.0	14	3x1.5	15	1.5	15
SIZE C	S012	2x0.75	18	2x1.5	15	2x2.0	14	3x1.5	15	1.5	15
	S014	2x0.75	18	2x2.0	14	2x2.0	14	3x2.0	14	2.0	14
	3-phase 220V power supply										
6175.4	S1R6	2x0.5	20	3x0.5	20	2x2.0	14	3x0.5	20	0.5	20
SIZE A	S2R8	2x0.5	20	3x0.5	20	2x2.0	14	3x0.5	20	0.5	20
SIZE B	S5R5	2x0.75	18	3x0.75	18	2x0.75	18	3x0.75	18	0.75	18
	S7R6	2x0.75	18	3x1.00	17	2x1.00	17	3x1.0	17	1.00	17
SIZE C	S012	2x0.75	18	3x1.5	15	2x2.0	14	3x1.5	15	1.5	15
	S014	2x0.75	18	3x2.0	14	2x2.0	14	3x2.0	14	2.0	14
	U018	2x0.75	18	3x2.50	13	3x2.5	13	3x2.5	13	2.50	13
SIZE D	U022	2x0.75	18	3x4.0	11	3x4.0	11	3x4.0	11	4.00	11
	U027	2x0.75	18	3x6.0	9	2x6.0	9	3x6.0	9	6.0	9
				3-phase 3	80V po	wer supply					
	T3R5	2x0.75	18	3x0.75	18	2x0.75	18	3x0.75	18	0.75	18
SIZE C	T5R4	2x0.75	18	3x0.75	18	2x0.75	18	3x0.75	18	0.75	18
SIZE C	T8R4	2x0.75	18	3x0.75	18	2x1.0	17	3x1.0	17	1.0	17
	T012	2x0.75	18	3x1.0	17	2x1.5	15	3x1.5	15	1.5	15
	T017	2x0.75	18	3x1.5	15	3x2.0	14	3x2.0	14	2.0	14
SIZE D	T021	2x0.75	18	3x4.0	11	2x4.0	11	3x4.0	11	2.5	11
	T026	2x0.75	18	3x6.0	9	2x6.0	9	3x6.0	9	6.0	9

2.4 Common DC Bus Cable Wiring

In some multi-axis application scenarios, the motion state of each axis is different, some servo motors work in the braking power-generation state, and other servo motors work in the energy-consumption state. Use the common DC bus technology for energy interaction, the energy generated by braking motor can be supplied to the energy-consuming motors, other than dissipating by regenerative resistors, so as to realize the energy-saving effect.

L1 L2 L3 L1 L2 L3 L1 L2 L3 SV3H SV3H SV3H 750W 750W 750W DO(RDY) DO(RDY) DO(RDY) DC+ DC-

Figure 2-11 Sample of Servo Common Bus

Only those drivers of the same specification are allowed to share bus in this way. To utilize common bus with drivers of different specifications may burn the drivers directly. DC bus P and N of the servo are connected in parallel so as to realize energy transfer among drives;

All drives must use the same power input. It's forbidden to utilize the power supply of different voltage and phase number. Otherwise, it might cause drive damage;

All drives mu-st be powered ON/OFF at the same time. Otherwise, it might cause drive damage;

Voltage level and phase sequence of all drives with common bus shall be consistent. Otherwise, it might cause drive damage and start a fire.

While using common bus, only after completing the configuration of common bus for all drives, can it be allowed for servo drive operation;

After the drive is powered on, when drive Rdy state occurs, drive DO outputs the ready signal, control the relay swich-on so as to realize the common bus connection;

While drive PN is connected to bus, in order to avoid excessive current in case of single-drive exception, please connect a fast fuse between bus bars.

2.5 Description of regenerative resistance wiring

2.5.1 Connecting regenerative resistance wiring

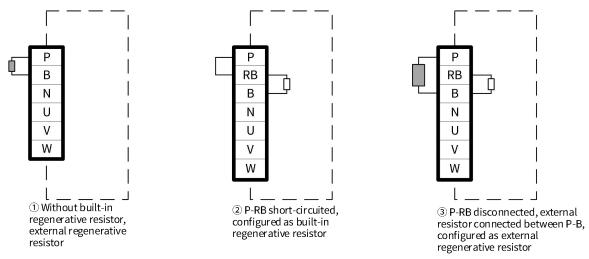


Figure 2-12 Regenerating resistor wiring

- For models without built-in regenerative resistor, external regenerative resistors are are connected between P-B;
- Do not connect any regenerated resistor between bus P and N, otherwise it might cause damage to drives and start a fire;
- For models with built-in regenerative resistor, short-circuit P-RB terminals while using the built-in resistor. While using the external resistor, remove terminal jumper between P-RB and connect the external resistor between P-B:
- In case of external regenerative resistor, select an appropriate resistor according to Section 2.5.3. Do not use any resitor below Min. external resistance allowed in Table 2-6. Otherwise, it might cause drive damage.
- Before using the servo, please confirm that the parameters related to external regeneration resistor have been properly set: P02.34 (regeneration resistor selection), P02.39 (power of external regeneration resistor), P02.40 (external regeneration resistance).

2.5.2 Specifications of regenerative resistors

Table 2-6 Specifications of regenerative resistors

Servo	Specifications on internal regenerative resistance Servo drive					Maximum braking
Rated volta	ge, current	Resistance value	Resistance power	Applicable power/Pr	external resistance	energy absorption of capacitor/Ec
	1.6A	-	-	-	50Ω	10J
	2.8A	-	-	-	45Ω	15J
Single/3-phase	5.5A	50Ω	50W	25W	40Ω	23J
220V	7.6A	25Ω	80W	40W	20Ω	32J
	12.0A	25Ω	80W	40W	15Ω	47J
	14.0A	25Ω	80W	40W	15Ω	57J
	18.0A	20Ω	100W	50W	10Ω	64J
3-phase 220V	22.0A	20Ω	100W	50W	10Ω	71J
	27.0A	20Ω	100W	50W	10Ω	95J
	3.5A	100Ω	80W	40W	80Ω	39J
	5.4A	100Ω	80W	40W	60Ω	39J
	8.4A	50Ω	80W	40W	45Ω	57J
3-phase 380V	12.0A	50Ω	80W	40W	45Ω	57J
	17.0A	35Ω	100W	50W	35Ω	114J
	21.0A	35Ω	100W	50W	25Ω	114J
	26.0A	35Ω	100W	50W	25Ω	114J

2.5.3 Selection and calculation of regenerative resistance

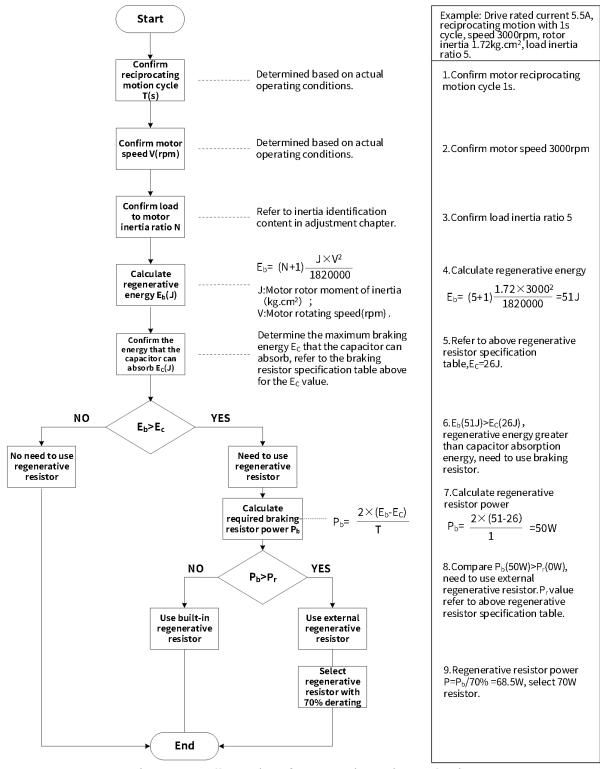


Figure 2-13 Illustration of regenerative resistor selection

2.6 Wiring of holding brake

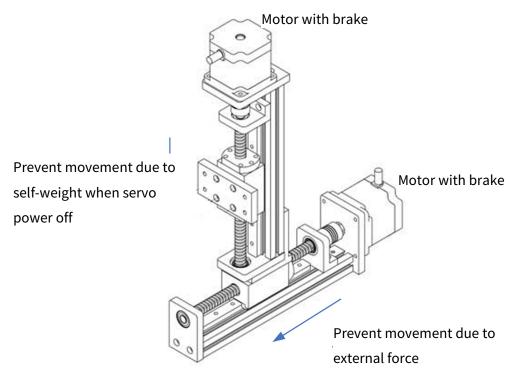


Figure 2-14 Schematic diagram of holdingbrake

Holding brake is used to stop the unexpected movement of moving load(e.g., falling under gravity) when servo system is not activated (e.g., the servo system is powered off) to prevent motors from moving unexpectedly after power off due to its own weight or external force.

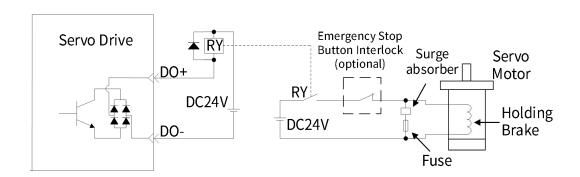


Figure 2-15 Layout diagram of holding brake

Built-in Holding brake of servo motor is only used for shutdown of motors, and frequent use for emergency stop would shorten its service life. Only if motor speed is less than 20rpm, Holding brake can be powered off;

It's recommended to use independent power supply to prevent the abnormal voltage drop from other electrical appliances, that could result in misoperation of Holding brake.

Different power sources are used to power the brake and brake control signal separately in order to prevent electronic devices from electromagnetic interference.

2.7 Description of Control Signal CN5 Port Wiring

2.7.1 Definition of Control Signal CN5 Port

Table 2-7 Definition of CN5 on control signal

Table 2-7 Definition of CN5 on control signal							
IO Interface Connector (CN5)	Module name	Signal name	Pin No.	DeError function			
		DI1	5	Forward limit			
		DI2	7	Reverse limit			
		DI3	8	Origin switch			
		DI4	9	Undefined			
	Digital input	DI5	10	Undefined			
		DI6	11	Undefined			
		HDI1	12	Probe 1			
		HDI2	13	Probe 2			
		DI_COM	6	DI common port			
		DO1+	1				
9 10 19 20 19		DO1-	2	Holding brake signal			
10 20		DO2+	14				
	Digital output	DO2-	15	Servo operation			
SCSI 20P		DO3+	3				
		DO3-	4	Servo Error output			
		PAO+	17	A phase frequency division			
		PAO-	18	output signal			
	Frequency division	PBO+	19	B phase frequency division			
	output	PBO-	20	output signal			
		GND	16	Frequency division output signal ground			

IO Interface Connector (CN5)	Module name	Signal name	Pin No.	DeError function
	Shell	_	_	Connect the cable shielding layer

2.7.2 Description of Digital Input Wiring

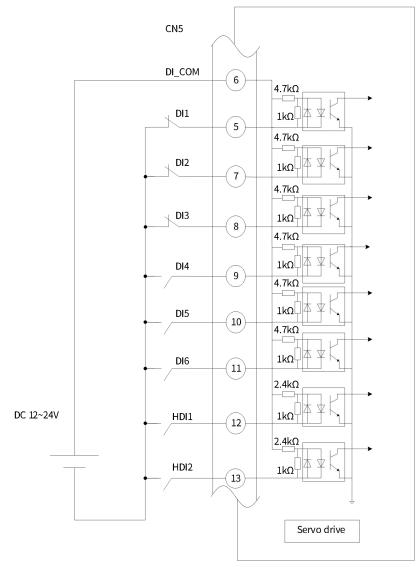


Figure 2-16 Connection wiring of digital input cable

(1) When upper device is relay output

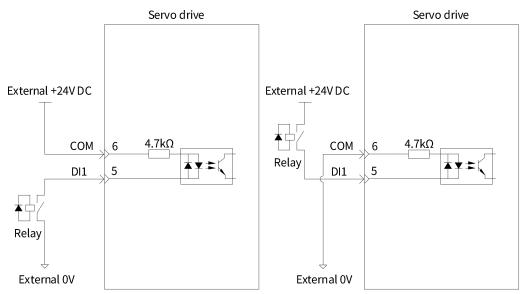
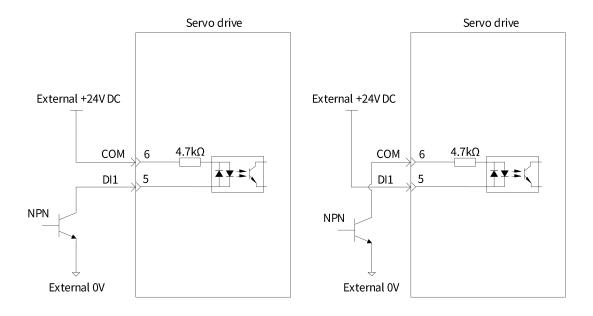



Figure 2-17 Digital input wiring diagram (relay output)

(2) When upper device is open collector

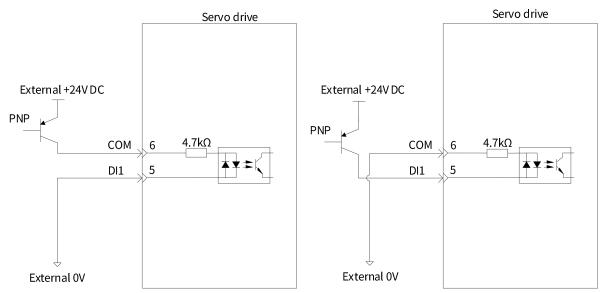


Figure 2-18 Wiring diagram of digital input(open collector)

Mixing input of PNP and NPN is not supported.

2.7.3 Description of Digital Output Wiring

Figure 2-19 Digital output wiring

The maximum allowable voltage and current of optocoupler output circuit inside servo drive are as follows:

Voltage: DC 30V(Max); Current: DC 50mA(Max.)

(1) When upper device is relay input

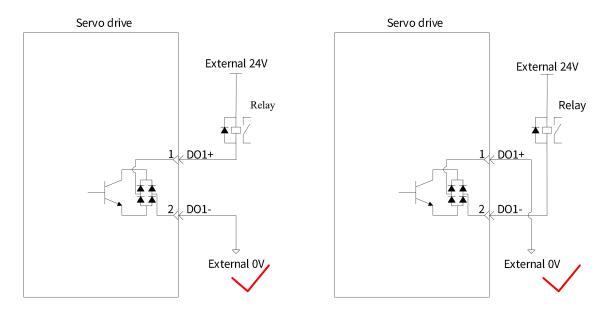


Figure 2-20 Schematic diagram of digital output wiring (relay input, correct wiring)

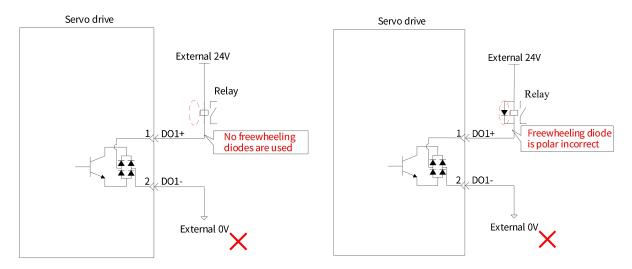


Figure 2-21 Schematic diagram of digital output wiring (relay input, error wiring)

(2) When upper device is optocoupler input

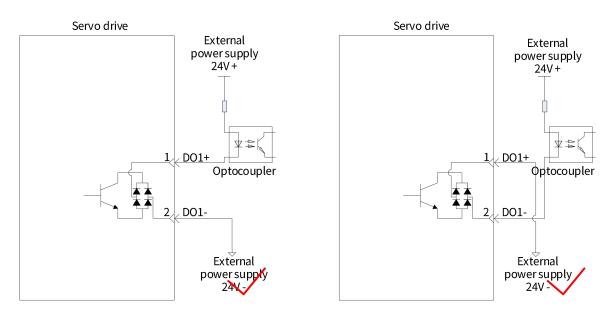


Figure 2-22 Wiring diagram of digital output(optical coupling input, correct wiring)



Figure 2-23 Wiring diagram of digital output(optocoupler input, error wiring)

2.7.4 Description of Frequency Division Output Wiring

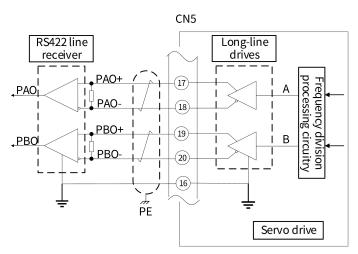


Figure 2-24 Frequency division output wiring

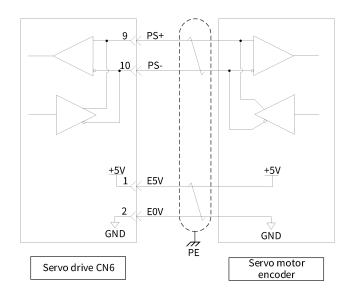
For receiving signal of output pulse, please use RS422 long line receiver (AM26C32 or equivalent);

Max. output current of frequency division output is 20mA;

Shielded twisted-pair cable is used. The shielding layer is connected to PE; Ground of frequency division output signal is connected to the receiving terminal.

2.8 Encoder interface definition and wiring description

2.8.1 CN6 Motor encoder


Table 2-8 Definition of drive encoder interfaces

Motor encoder Connector (CN6)	Module name	Signal name	Pin No.	Wiring method
		E5V	1	Todata da ain
		E0V	2	Twisted pair
		_	3	_
		_	4	_
	Motor encoder	_	5	_
9 10		_	6	_
		_	7	_
		_	8	_
		PS+	9	
IEEE 1394 10P		PS-	10	Twisted pair
		PE	Shell	Connect the cable shielding layer

This port is used for connection between drive and motor encoder. During use, the distance between encoder cable and main circuit wire should be more than 30cm or above. Do not bundle them together with conduit.

The cable length between drive and motor is less than 20m. In case of the requirement above 20m, please negotiate with sellers.

Input voltage range of the encoder-end connector is 4.75V to 5.25V DC. Please select the appropriate wire. For 10m or less, use shielded twisted pair with a cross-sectional area of 0.18 mm²(AWG24) or above; For 10m or above, use shielded twisted pair with a cross-sectional area of 0.32 mm²(AWG22) or above.

24Figure 2-25 Motor encoder signal connection

2.8.2 CN7 Full closed-loop encoder

Table 2-9 Definition of fully closed-loop encoder interface

Table 2-9 Definition of fully closed-loop encoder interface						
Fully Closed loop encoder Connector (CN7)	Module name	Signal name	Pin No.	Wiring method	Functions	
	_	5V	1	Twisted pair	Encoder power	
		GND	2	Twisted pair	supply	
		SEC_A+	3	To take does to		
		SEC_A-	4	Twisted pair		
9 10 10		SEC_B+	5	Twisted pair	Second encoder input interface	
	Fully	SEC_B-	6			
9 10	closed-loop encoder	SEC_Z+	7	To date do side		
	encodei	SEC_Z-	8	Twisted pair		
		_	9		_	
IEEE 1394 10P		MTR_TEMP	10		Input of motor temperature sensor	
		Shell	_	Connect the cable shielding layer	Shielded	

This port is used for connection between drive and motor encoder. During use, distance between the cable

and main circuit wire should be 30cm;

Please use shielded twisted pair cable for encoders;

Input of fully closed-loop encoder is differential input, and its Max. input frequency and Min. pulse width are shown in the table below:

Table 2-10 Input signal features of fully closed loop encoder

Pulse method	Max. frequency (pps)	Min. pulse width (μs)
Differential input	4M	0.125

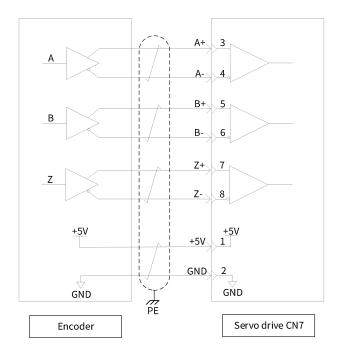


Figure 2-26 Differential signal input of fully closed loop encoder

2.8.3 CN7 Input of motor temperature sensor

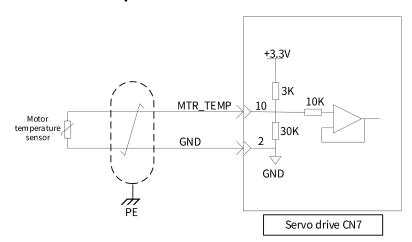


Figure 2-27 Wiring diagram of motor temperature sensor

Support PT/NTC/switch types of motor temperature sensors. Please ensure that function codes P00.05/P08.31/P08.33/P08.34 are set properly.

2.9 Definition of Connector

2.9.1 CN1 Serial communication port

Table 2-11 Definition of serial communication ports

PC debugging connector	Module name	Signal name	Pin No.	Functions
	Serial communication port	VBUS	1	Connect to serial communication port of PC upper computer debugging
		D-	2	
		D+	3	
		_	4	
		GND	5	
Mini USB		Shell	_	

The port is used to connect drive to PC. It can execute test run, adjust parameters and collect waveform by debugging software of upper computer.

This serial communication port is Mini-USB Type B and compatible with USB 2.0.

2.9.2 CN3&CN4 EtherCAT Connector

Table :	2-12 Definitions of Ethe	rCAT connector

EtherCAT Co	nnectors (CN3, CN4)	Pin No.	Signal name	Functions
		1	TX+	Transmit+
		2	TX-	Transmit-
	1.0	3	RX+	Receive+
		4	-	-
CN3 IN		5	-	-
		6	RX-	Receive -
	9	7	-	-
		8	-	-
	8	9	TX+	Transmit+
		10	TX-	Transmit-
CN4 OUT		11	RX+	Receive+
		12	-	-
		13	-	-
		14	RX-	Receive -
	RJ45	15	-	-
		16	-	-

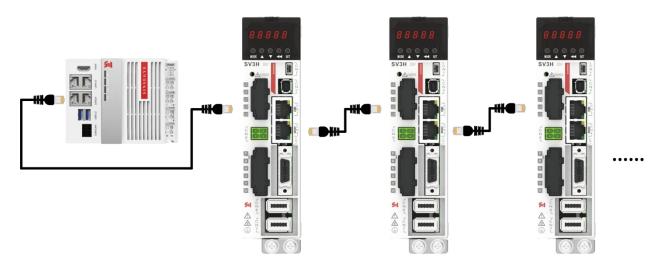
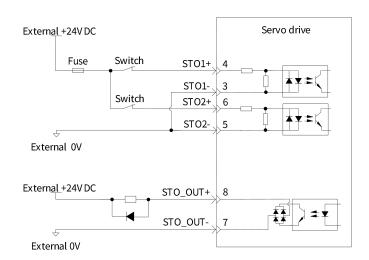


Figure 2-28 Description of EtherCAT communication cables

Please use shielded twisted-pair wire as CAT5E or above, connect to metal shell of network interface to ensure EMC performance.

The distribution length of communication cable shall be less than 100m;

The master communication port is connected to CN3(IN), and CN4(OUT) is connected to the next slave device. If the cables were incorrectly connected, the communication would fail.


2.10 CN2 Definition and Wiring Description of Functional Safety Connector

2.10.1 Definition of Functional Security Terminals

Table 2-13 Definition of functional security terminals

Functional Safety Connector (CN2)	Module name	Signal name	Pin No.	Functions	
2 1 3 6 5 5	Functional safety	Internal power negative	1	Built-in power supply	
		Internal power positive	2	(Do not use)	
		STO1-	3	STO1	
		STO1+	4		
		STO2-	5	CTO2	
		STO2+	6	STO2	
		STO_OUT-	7	CTO status autout	
		STO_OUT+	8	STO status output	
		Shell	_	Shielded	

2.10.2 Function Safety Wiring Description

28Figure 2-29 Description of functional safety wiring

2.10.3 Relationship of STO I/O Signals

Table 2-14 Relationship of STO input and output signal

STO1 status	STO2 status	STO_OUT status	Power status of motor
Invalid	Invalid	Power on	Power off
Invalid	Active	Power off	Power off
Active	Invalid	Power off	Power off
Active	Active	Power off	Power on

2.11 Grounding and anti-interference measures

2.11.1 Grounding Measures

Table 2-15 Precautions for grounding servo drives

Mount the drive on metal shell(control cabinet)

Please connect the ground terminal of servo motor to GND PE of servo drive, and ground PE terminal reliably

Drive must be single-point ground

Use thick cable(≥2.0mm2) for grounding cables as much as possible; Use thick cable(≥3.5mm2) for external grounding as braided copper wire as much as possible

Type D or above ground(grounding resistance below 100Ω) is recommended.

Ensure to connect ground terminal of drive and ground cable(PE) of control cabinet to avoid electric shock

As there are two protective ground terminals, do not connect all cables together

2.11.2 Anti-interference measures

Due to different application of peripheral wiring, grounding and anti-interference devices, switching noise may affect normal operation of servo drives. Therefore, it must adopt the correct grounding method and anti-interference measure. The following figure is schematic diagram of anti-interference measure for servo drive.

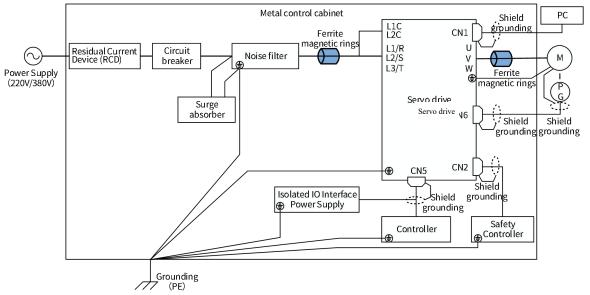


Figure 2-30 Schematic diagram of anti-interference measure of servo drive

The length of command input cable shall be less than 3m. That of encoder cable shall be below 20m and use twisted-pair shielded cable;

Separate strong current cable from weak current cable and keep a distance more than 30cm. Do not put in the same pipeline or tie together;

Cables, I/O lines and power lines of drive are equipped with ferrite magnetic rings;

Install surge suppressors on the coils of relay, solenoid and electromagnetic contactor;

Please install the noise filter at the input of power line, and do not share the power supply with welding machine, discharge processing equipment, etc.

Connect shielded wires of all cables to ground wire (PE).

Please ground both ends of shielded layer of motor encoder cable.

2.11.3 Noise filter

2.11.3.1 Use of noise filter

To prevent the interference of power line and reduce the influence of servo drive on other sensitive equipment. As for selection, installation and wire routing of noise filter, please obey the following guidelines:

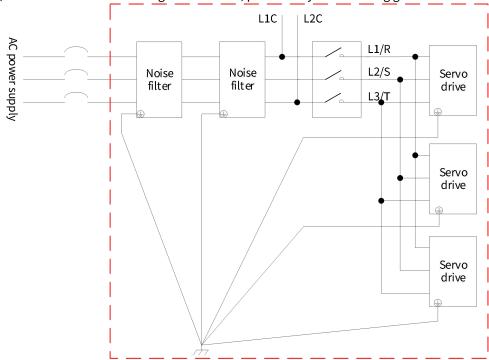


Figure 2-31 Schematic diagram for use, installation and ground of noise filters in series

Please select the corresponding noise filter according to input current;

Please arrange separately the input and output wires of noise filter; Do not put the both in the same pipeline or tie together;

Ground wire of noise filter is arranged separately from the output power line.

Noise filter should use the single-point ground, and grounding wire should be as short and thick as possible.

While noise filter and servo drive are installed in the same cabinet, it is recommended to fix the filter and the servo drive on the same metal plate, ensure that the contact is conductive and well-joint, and ground the metal plate.

For filter installation, the wire between filter and drive must be as short as possible, which shall be less than 30cm. At the same time, ensure that the filter and the drive are connected to the same grounding reference plane. Ensure the reliable ground of filter, or the filtering effect can't be achieved.

While using multiple drives and sharing a noise filter in the power supply department, please consult the noise filter manufacturer. If noises reach the limit, it would be better to use two in series(as shown in the figure above)

2.11.3.2 Model selection of noise filter

In order to meet the requirement of the product per EN/IEC 61800-3 standard on radiation and conducted emission EMC directive, please connect external EMC filter. SCHAFFNER's single-phase FN2090 and 3-phase FN3258 filters are recommended.

SCHAFFNER FN2090 filter

SCHAFFNER FN3258 filter

Figure 2-32 SCHAFFNER EMC filter outline

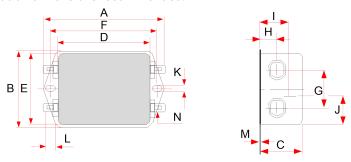

Servo drive model and recommended EMC filter model are shown in the following table:

Table 2-16 Recommended manufacturers and models of EMC filters

Series	Drive type	Rated input current (A)	Filter model	
		In	(SCHAFFNER)	
	Single-p	hase 220V power supply		
0.75	SV3H-ES1R6XX	2.3	FN2090-3-06	
SIZE A	SV3H-ES2R8XX	4.0	FN2090-4-06	
SIZE B	SV3H-ES5R5XX	7.9	FN2090-8-06	
	SV3H-ES7R6XX	9.6	FN2090-10-06	
SIZE C	SV3H-ES012XX	12.8	FN2090-16-06	
	SV3H-ES014XX	16.0	FN2090-16-06	
	3-pha	se 220V power supply		
	SV3H-ES001XX	0.8	FN3258-7-44	
SIZE A	SV3H-ES1R6XX	1.4	FN3258-7-44	
	SV3H-ES2R8XX	2.6	FN3258-7-44	
SIZE B	SV3H-ES5R5XX	4.4	FN3258-7-44	
SIZE C	SV3H-ES7R6XX	5.6	FN3258-7-44	
	SV3H-ES012XX	8.0	FN3258-16-44	
	SV3H-ES014XX	10.2	FN3258-16-44	
SIZE D	SV3H-EU018XX	18.7	FN3258-30-44	
	SV3H-EU022XX	20.7	FN3258-30-44	
	SV3H-EU027XX	24.4	FN3258-30-44	
3-phase 380V power supply				
SIZE C	SV3H-ET3R5XX	2.4	FN 3258-7-44	

	SV3H-ET5R4XX	3.6	FN 3258-7-44
	SV3H-ET8R4XX	6.6	FN 3258-7-44
	SV3H-ET012XX	8	FN 3258-16-44
	SV3H-ET017XX	12	FN 3258-16-44
SIZE D	SV3H-ET021XX	16	FN 3258-16-44
	SV3H-ET026XX	21	FN 3258-30-33

Note for EMC filter installation dimensions recommended:

32Figure 2-33 Dimensions of FN 2090 1~20A filters (unit: mm) 17Table 2-17 Dimensions of FN 2090 1~20A filters (unit: mm)

17 Tuble 2-17 Difficultions of the 2000 1 20A fitters (unit: film)														
Rated current (A)	A	В	С	D	E	F	G	Н	I	J	K	L	М	N
1	71	46.6	22.3	50.5	44.5	61	21	10.8	16.8	25.25	5.3	6.3	0.7	6.3×0. 8
3 4 6	85	54	30.3	64.8	49.8	75	27	12.3	20.8	19.9	5.3	6.3	0.7	6.3×0. 8
8 10 12 16	113.5±1	57.5±1	45.4 ±1	94±1	56	103	25	12.4	32.4	15.5	4.4	6	0.9	6.3×0. 8

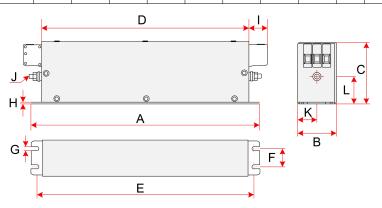


Figure 2-34 Drawing of FN3258 7~30A filter(unit: mm)

Table 2-18 Dimensions of FN3258 7~30A filter size(unit: mm)

Rated current (A)	A	В	С	D	E	F	G	н	I	J	К	L
7	190	40	70	160	180	20	4.5	1	22	M5	20	29.5
16	250	45	70	220	235	25	5.4	1	22	М5	22.5	29.5
30	270	50	85	240	255	30	5.4	1	25	M5	25	39.5

2.11.4 Leakage protection circuit breaker

Servo drive will generate high frequency leakage current during operation. The following matters should be noted in the configuration of cirtuit leakage protection while installing the drive:

The equipment can generate DC leakage current in protective conductor, and must use Type B (delay type) leakage protection circuit breaker;

If multiple drives are required for installation, each drive should be equipped with a leakage protection circuit breaker;

Capacity, carrier frequency, type and length of motor cable, and EMI filter of drive would affect leakage current, so the protection threshold should be set reasonably.

Suc brands as Chint and Schneider are recommended for leakage protection circuit breaker;

When the leakage current generated by drive results in action of leakage protection circuit breaker, the following measures can be taken:

Increase the rated operating current of leakage protection circuit breaker;

Replace the leakage protection circuit breaker to Type B (delay type) with the high-frequency suppression;

Reduce the carrier frequency;

Shorten the output drive cable length;

Install a leakage suppression device.

2.11.5 Cable and wiring Requirements

(1) Power cable requirement

To meet the requirement of CE mark EMC, motor power cable must be shielded witt shielding layer which must be well grounded. Shielded cable consists of a shielded cable with three phase conductors and shielded cable with four phase conductors. If conductive properties of the shielding layer can't meet the requirement, a separate PE line shall be added. Or shielded cable with four phase conductors, herein, one of which is PE line. To effectively suppress the emission and conduction of RF interference, the shielding layer of shielding cable is made of coaxial copper braided tape. To increase the shielding efficiency and conductivity, weaving density of the shielding layer shall be greater than 90%.

Recommended power cable type as shown in the following figure - symmetrical shielded cable:

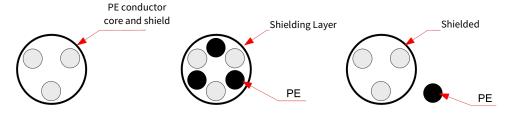


Figure 2-35 Recommended Power Cable Type

I/O cable shielding layer of main loop of servo drive is grounded with PE terminal on drives together(Please refer to the following figure for wiring).

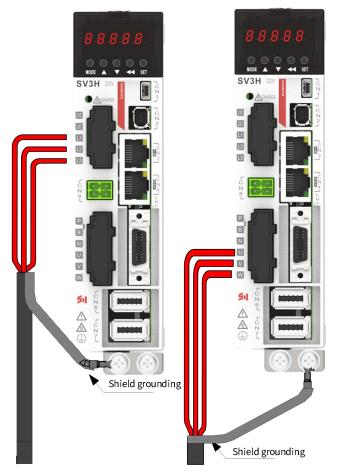


Figure 2-36 Wiring of shielding layer of I/O power cable

The following matters should be noted when selecting output cable of servo drive:

Do not connect any capacitor or surge absorber, otherwise it might activate servo drive regular protection or even damage servo drives;

When motor cable is too long, it's easy to result in electrical resonance due to distributed capacitance, then it might cause motor insulation damage or large leakage current which could activate servo drive overcurrent protection; When the length of motor cable is greater than 100m, AC output reactor must be installed near the servo drive.

Shielding cable is recommended for motor output. Shielding layer shall be bonded for 360° in the structure of grounding support, and shielding layer lead-in wire is crimpped to PE terminals.

The lead-in wire of shielding layer of motor cable should be as short as possible, and width $b \ge 1/5 \cdot a$ (see Figure 2-37).

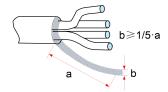


Figure 2-37 Lead-in diagram of motor cable shielding layer

(2) The requirement on encoder cable

The encoder cable must be shielded twisted pair.

Input voltage range of the encoder-end connector is 4.75V to 5.25V DC. Please select the appropriate wire. For 10m or less, use shielded twisted pair with a cross-sectional area of 0.18 mm²(AWG24) or above; For 10m or above, use shielded twisted pair with a cross-sectional area of 0.32 mm²(AWG22) or above.

(3) The requirement on USB cable

For connector on driver side, please use the commercially available USB mini-B that meets the specification of computers.

Use shielded USB cable;

While using the cable without any filtering measure, install signal ferrite magnetic rings at both ends of cable.

(4) The requirement on wiring layout

Pay attention to the following matters for routing, and it's recommended to use the routing mode and layout spacing:

Motor cable routing must be far away from other cables. Motor cables of several drives can be parallel wiring;

It is recommended to arrange the motor cable, input power cable, control cable, and encoder cable in different cable ducts. In order to avoid electromagnetic interference due to rapid changes of drive output voltage, long distance parallel wiring of motor cables and other cables should be avoided.

When control cable must pass through power cable, ensure that the angle between two cables is 90 degrees as far as possible. Do not pass other cables through drive;

Power input and output lines and weak current signal lines (e.g., control circuit) of drive shall not be in parallel as far as possible, and vertical layout shall be applied if possible;

It must be properly connected and grounded among cable ducts. Aluminum duct can be used to improve equipotential.

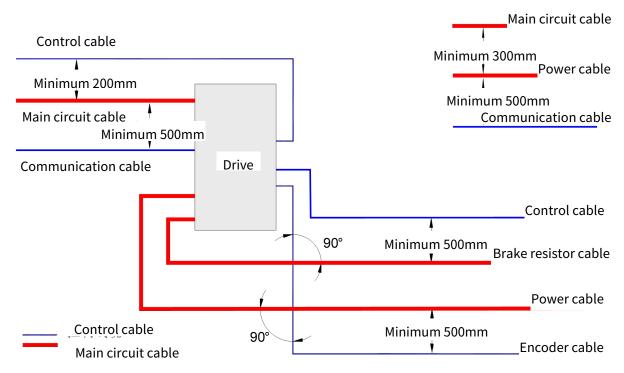


Figure 2-38 Recommended wiring layout

2.11.6 I/O magnetic ring selection

To reduce interference to adjacent devices, it's recommended to add a filter magnetic ring to 3-phase I/O power line of servo drive:

Input cable should be installed far away from servo drive;

Output cable should be installed close to servo drive.

The following table shows magnetic ring models recommended of manufacturer.

Table 2-19 Magnetic ring models recommended of manufacturer

Magnetic ring models recommended of manufacturer

Dimensions (outer diameter × inner diameter × thickness) (mm)

DY644020H

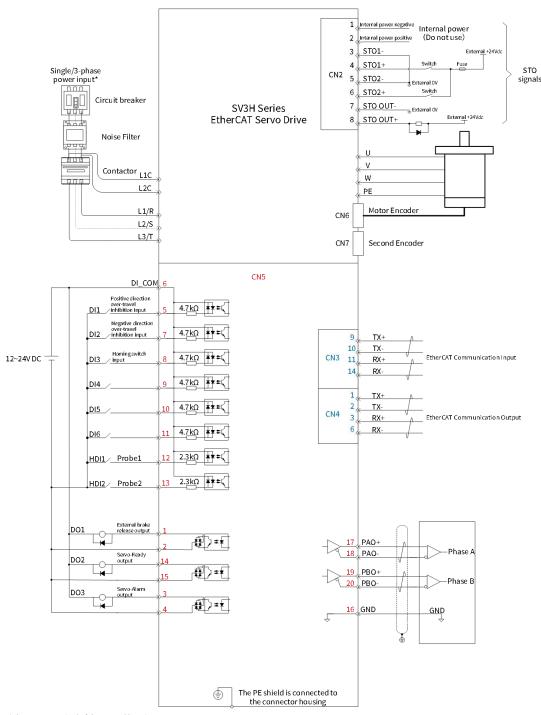
DY805020H

B0×50×20

DY1207030H

120×70×30

2.11.7 Solutions to common EMC problems


Servo drive is a strong interference equipment, if Error from routing, grounding and protection in the use occurs, it might generate interference. If there is mutual interference with other devices, the following

measures can be taken for improvement.

Table 2-20 Common EMC problems and solutions

Table 2-20 Common EMC problems and solutions					
Interference type	Improvement measure				
Switch tripping of leakage protection circuit breaker	 Under the premise of not affecting the performance, reduce carrier frequency; Shorten the length of drive line; Add magnetic ring around to drive line (not winding PE wire); For power-on instantaneous tripping, it shall disconnect the input larger ground capacitor; (Disconnect the ground of external or built-in filter, and ground of ground Y capacitor at input port); For potential tripping in operation, it shall take the leakage current suppression measure at input port(leakage current filter, safety capacitor + magnetic ring, magnetic ring); 				
Drive operation causes interference	 Motor shell is connected to PE end of the driver; Drive PE end is connected to power grid PE; Input power line is equipped with magnetic ring; Mount capacitors or magnetic loops to the interfered signal ports; Add extra common ground among devices; 				
Communication interference	 Motor shell is connected to PE end of the driver; Drive PE end is connected to power grid PE; Input power line is equipped with magnetic ring; Communication line source and load end are equipped with matching resistance; Communication line/differential line are equipped with external communication GND; Communication line is shielded, and shielding layer is connected to communication GND; Multi-node communication wiring needs to use Daisy chain; Branch length is less than 30cm; 				
I/O interference	1. Low speed DI increase capacitance filtering, recommended maximum 0.1uF; 2. AI increase capacitive filter, the recommended maximum 0.22uF;				

2.12 General Wiring Diagram

^{*}The power terminal of the control loop is L1C, L2C; Main circuit power terminals: Single/3-phase 220V terminals are L1, L2, L3; 3-phase 380V terminals are R, S, T.

Figure 2-39 SV3H drive configuration diagram

Internal 24V power supply ranges 20~28V; Max. working current is 200mA.

DI input power supply shall be external connection. Power supply voltage ranges from DC12 to 24V and can't] exceed 30VDC.

Use twisted-pair shielded cable for high-speed/low-speed pulse port. Both ends of the shielded layer must be connected to PE. GND is reliably connected to upper machine signal.

DO output power supply must be external connection and ranges from 5 to 24V. Max. allowable voltage and Max. allowable current of DO port are DC30V and 50mA respectively.

The frequency division output of encoder should use twisted pair shielded cable. The shielding layer must be connected to PE at both ends. GND is reliably connected to the upper machine signal.

Chapter 3 Commissioning

3.1 Settings of Basic Operation

3.1.1 Motor Tuning

Before servo system runs, it is necessary to enter the motor parameters and identify magnetic poles. This section describes the panel operation process. For details about background operations, see 3.3 Servo3 Designer.

(1)Entering motor parameters

The setting mode of motor parameters is shutdown operation, and the effective mode is power-on reset. List of motor parameters is as follows:

Table 3-1 Parameters of the Motor

		DIE 3-1 Para	meters of the Motor		
Name	Function code	Uit	Initial value	Min.	Max.
Rated voltage	P00.10	V	0-220V	0-220V	655.35
Rated current	P00.11	Α	4.70	0	655.35
Rated power	P00.12	kW	0.75	0	655.35
Rated torque	P00.13	N.m	2.39	0	42949672.95
Max. torque	P00.15	N.m	7.16	0	42949672.95
Rated speed	P00.17	rpm	3000	0	65535
Max. speed	P00.18	rpm	6000	0	65535
Inertia of motor	P00.19	kg • cm²	1.30	0	42949672.95
Number of pole pairs	P00.21	-	4	0	65535
Phase resistance	P00.22	Ω	0.500	0	65.535
Inductance Lq	P00.23	mH	3.27	0	655.35
Inductive Ld	P00.24	mH	3.87	0	655.35
Counter potential	P00.25	mV/rpm	33.30	0	655.35
D-axis back potential compensation	P00.31	%	60.0	0.0	6553.5
Q-axis back potential compensation	P00.32	%	100.0	0.0	6553.5
Current sampling and extraction rate	P00.33	-	0- Extraction rate 32	0- Extraction rate 32	3- Extraction rate 256
D axis proportional gain 1	P00.34	Hz	2000	0	65535
D axis integral gain 1	P00.35	%	2.00	0.00	655.35
Q-axis proportional gain 1	P00.36	Hz	2000	0	65535
Q axis integral gain 1	P00.37	%	1.00	0.00	655.35
D axis proportional gain 2	P00.38	Hz	1000	0	65535

Chapter 3 Commissioning

D axis integral gain 2	P00.39	%	2.00	0.00	655.35
Q-axis proportional gain 2	P00.40	Hz	1000	0	65535
Q axis integral gain 2	P00.41	%	1.00	0.00	655.35

Please check the model and parameters of motor used, and enter the motor parameters according to the following process.

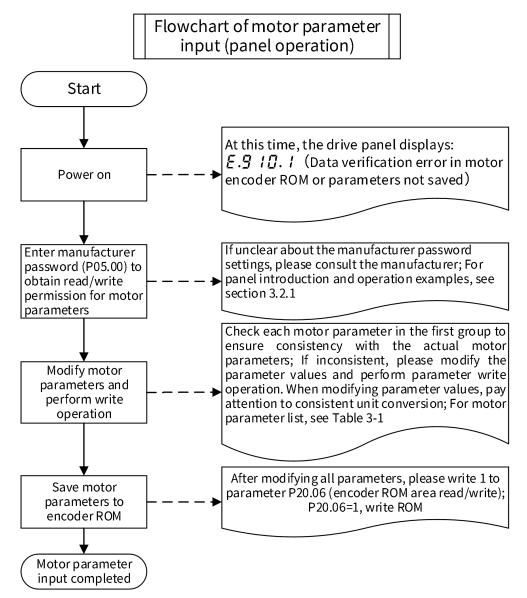


Figure 3-1 Panel operation process of motor parameter entering

(2) Magnetic pole identification

Operation process of magnetic pole identification is as follows.

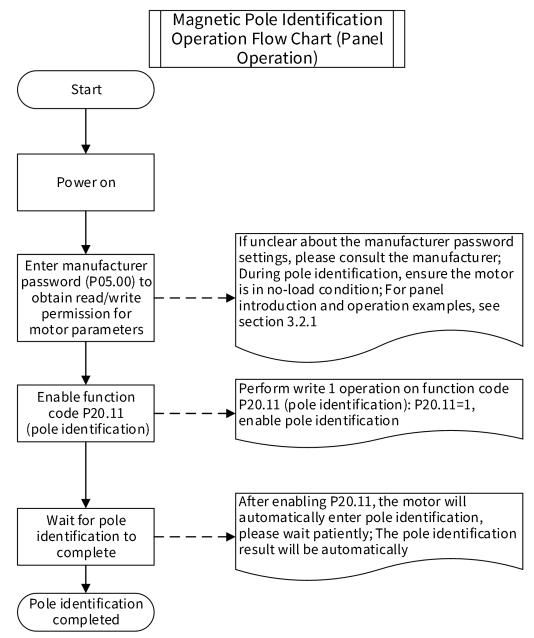


Figure 3-2 Operation process of magnetic pole identification

3.1.2 Brake Setting

Holding brake is used to stop the unexpected movement of moving loads(e.g., falling under gravity) when the servo system is not activated (e.g., servo system is powered off), to prevent servo motor from moving unexpectedly due to its own weight or external force after being powered off.

⚠ Note:

Holding brake is the non-powered action type special mechanism, which can't be used for braking, and can be used only when servo motor is in the stop state.

Non-polarity of Holding brake coil;

After servo motor stops, it shall switch off servo enable.

When the motor with built-in Holding brake runs, the brake might make the clicking, that doesn't affect any function;

When the brake coil is energized (the brake is ON), magnetic flux leakage may occur at shaft ends. When using the magnetic sensor near motors, please pay attention to the possibility of this situation.

(1) Holding brake parameter setting

For applications with Holding brake, it must set Holding brake enable switch (P05.12) ON, and one of servo drive DO terminals must be configured to Function 17 (BK, Holding brake control), and ensure the valid logic for the corresponding DO terminal.

According to the current state of servo drive, working time sequence of the brake mechanism consists of 2 types: the brake time sequence in normal state of servo drive and the brake time sequence in Error state of tservo drive.

Table 3-2 Index code of P05.12 Holding brake enable switch

P05.12- Lock Holding brake switch				
Index - Subindex	0x2005-0D			
Data type	UINT16			
Accessibility	Readable/writable			
Unit	-			
DeError value	1			
Min.	0			
Max.	1			
Setting and effective mode	Run settings/Effective immediately			
Related mode	-			
Note	-			

Table 3-3 Holding brake output No.

Encoding	, Name	Function name	Functions
17	вк	Holding brake control	Invalid, the brake power supply is ON, the brake runs, motor is in the position stalled state; Effective, the brake power supply is OFF, the brake is cancelled, and motor can move;

(2) Holding brake sequence of servo drive in normal state

Holding brake sequence in the normal state can be divided into such 2 situations as motor static and motor dynamic:

Static: Motor actual speed is below 30rpm;

Dynamic: Motor actual speed reaches 30rpm and above.

(3) The brake sequence when servo motor is static

When servo enable is switched from ON to OFF, if the current motor speed is lower than 30rpm, the drive would run according to static brake sequence;

After the brake output is set from OFF to ON, do not enter any position/speed/torque instruction within P05.13 time, or instructions would be lost or it would run improperly;

Being used in vertical axis, self-weight or external force of mechanical moving part may cause the slight movement of machine. When servo motor is stationary, the servo enable switches OFF, and the brake output immediately turns OFF, but within P05.14 time, the motor is still in the power-on state to prevent mechanical moving part from moving due to self-weight or external force.

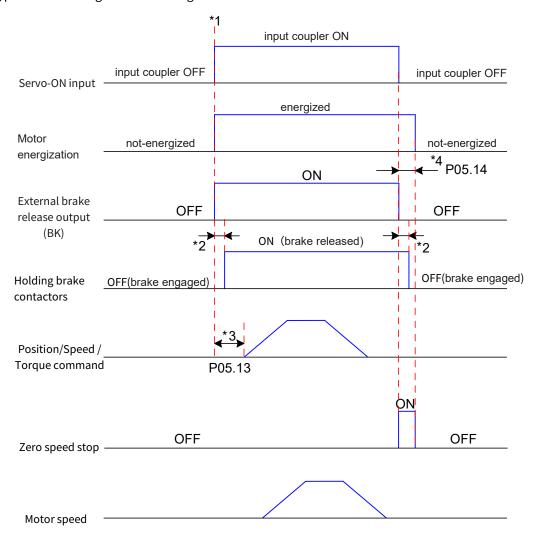


Figure 3-3 Timing diagram of Holding brake when motor is stationary

- *1. When servo enable is ON, the brake output is set as ON; At the same time, the motor enters the power-on state;
- *2. Please refer to the relevant specification for delay time of action of Holding brake contact part;
- *3. From the brake output set as ON to inputing command, please leave an interval above P05.13 time;
- *4. When servo motor is static(motor speed below 30rpm), when servo enable is OFF, brake output is set as OFF at the same time. By P05.14, motor enters the delay of non-power-on state after brake output is set as OFF.

Table 3-4 P05.13 Index code from the brake switch-off to receiving command delay(Stop state)

P05.13 - F	P05.13 - From the brake switch-off to receiving command delay				
Index	0x2005-0E				
Data type	Uint16				
Accessibility	Readable/writable				
Unit	ms				
DeError value	250				
Min.	0				
Max.	500				
Setting and effective mode	Run settings/Effective immediately				
Related mode	-				
Note	-				

Table 3-5 P05.14 Index code of zero speed holding time of Holding brake switched on (Stop state)

Table 3-3 F 03:14 index code of zero speed flotding time of flotding brake switched on (Stop state)					
P05	P05.14- Zero speed holding time for lock suction				
Index	0x2005-0F				
Data type	Uint16				
Accessibility	Readable/writable				
Unit	ms				
DeError value	150				
Min.	1				
Max.	1000				
Setting and effective mode	Run settings/Effective immediately				
Related mode	-				
Note	-				

(4) Sequence of Holding brake when servo motor is moving

When servo enable is switched from ON to OFF, if the current motor speed is higher than or equal to 30rpm, the drive will operate according to the motion brake sequence.

When the servo enable is set from OFF to ON, do not enter position/speed/torque command within P05.13 time, or commands will be lost or operates improperly;

While servo motor is moving, servo enable OFF occurs, and servo motor enters zero speed stop state, but Holding brake output can be set as OFF only if any of the following conditions are met. I. P05.16 time hasn't expired, but it has reduced the motor speed to P05.15; ii . P05.16 time ends, but motor speed is still above P05.15.

Output of Holding brakeONchangeOFFthen50msduring the period, motor is still powered on and prevent mechanical parts from moving due to self-weight or external force.

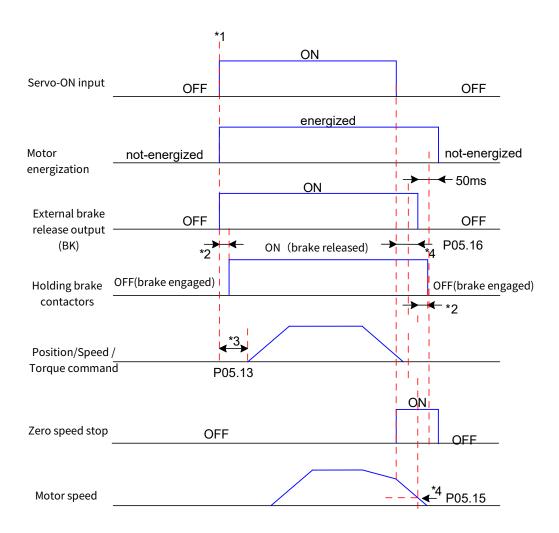


Figure 3-4 Sequence diagram of Holding brake when motor moves

- *1. When servo enable is ON, the brake output is set as ON; At the same time, the motor enters the power-on state;
- *2. Please refer to the relevant specification for delay time of actions of Holding brake contact part.
- *3, From Holding brake output as ON to input command, please set an interval above P05.13.
- *4. In the case of servo motor movement, when servo enable is OFF, it can set the delay of Holding brake output OFF after servo enable is OFF. It can be set through P05.15 and P05.16. After Holding brake outputs OFF, delay time is

50ms, then motor would enter the non-powered state.

Table 3-6 P05.15 Holding brake power-on speed threshold

P05.15 - Holding brake power-on speed threshold					
Index	0x2005-10				
Data type	Uint16				
Accessibility	Readable/writable				
Unit	rpm				
DeError value	30				
Min.	0				
Max.	3000				
Setting and effective mode	Run settings/Effective immediately				
Related mode	-				
Note	-				

Table 3-7 P05.16 - Holding brake power-on speed threshold

Table 3 11 03:10 Hotaling Brake power on speed timeshota				
P05.16 - Holding brake power-on speed threshold				
Index	0x2005-11			
Data type	Uint16			
Accessibility	Readable/writable			
Unit	ms			
DeError value	500 (ms)			
Min.	1			
Max.	1000			
Setting and effective	Dun settings/Effective immediately			
mode	Run settings/Effective immediately			
Related mode	-			
Note	-			

(5) Sequence of Holding brake in servo drive Error state

According to stop modes, servo Errors are classified into Type 1 Errors(referred to as NO.1) and Type 2 Errors (referred to as NO.2). For details, see Chapter 5 Troubleshooting and Alarm. Holding brake sequence of servo drive in Error state can be divided into the following 2 situations:

3.1.3 Selection of Running Direction

By setting the direction, it can reverse motor rotation without changing the polarity of input instruction. After modification, only when powering on the servo again, can it take effect.

When "Direction Selection" is changed, pulse form of servo drive output and positive/negative state of monitoring parameters won't change.

Setting of "Forward drive" in the overrun prevention is identical to that of "Motor operation direction selection (P04.01)".

As for operation direction setting, the selections are available as "2004-02h", or "P04.01" on the panel, or "P04 group - Motor operation direction selection" on background software.

Table 3-8 P04.01- Selection of motor operation reversing

P04.01- Selection of motor operation reversing					
Index - Subindex 0x2004-02					
Data type	UINT16				
Accessibility	cessibility Readable/writable				

Unit	1
DeError value	0
Min.	0
Max.	1
Setting and effective mode	Stop setting/power-on reset
Related mode	ALL
Note	When viewed from motor shaft side.its rotation direction is defined as positive.

3.1.4 Absolute Value Function

(1)Instruction of absolute value system

Absolute encoder can simultaneously record the position of servo motor and turns of servo motor rotation. Single-turn resolution is 1048576, and turns of 16-bit Max. 65535 can be recorded. Absolute encoder will back up position data when the upper servo drive is powered off. After power-on reset, machine absolute position can be calculated without re-starting the original zero point(when servo drive uses the incremental encoder, position feedback is 0 after power-on. By the original zero point, it can find the point where mechanical position feedback is really 0, accordingly servo motor can operate properly on the mechanical equipment; After absolute value encoder is used, the correct position feedback will be calculated according to the back-up data by encoder after power-on reset.

SV3 servo drives support absolute position linear mode and absolute position rotation mode, which is suitable for position, speed, and torque mode;

E.917 encoder battery Error occurs when battery is switched on for the first time. It shall set P20.05=1 to reset the encoder Error, and then perform the origin zero return.

To modify the direction reservsing selection of P04.01, it shall reset the origin zero return;

In absolute position mode, the servo automatically detects whether motor number is absolute encoder motor, if the setting is wrong, Error E.019 occurs(encoder matching Error).

(2) Object related to absolute value system

Function selection object:

Table 3-9 P04.02 - Selection of Position Feedback System

P04.02 - Selection of Position feedback System					
Index - Subindex	0x2004-03				
Data type	UINT16				
Accessibility	Readable/writable				
Unit	-				
DeError value	0				
Min.	0				
Max.	2				
Setting and effective mode	Stop setting/power-on reset				
Related mode	ALL				

Note	Set absolute value system		
	Settings	Selection of absolute value system	
	0	Incremental mode	
	1	Absolutely linear model	
	2	Absolute rotation mode	

Table 3-10 P20.05- Encoder reset

Table 3-10 P20.05- Encoder reset						
P20.05- Encoder reset						
Index - Subindex	0x2020-06					
Data type	UINT16	i				
Accessibility	Readable/wr	itable				
Unit	-					
DeError value	0					
Min.	0					
Max.	2					
Setting and effective mode	Stop setting/power-on reset					
Related mode	-					
	Encoder re	eset				
	Settings	Description				
Note	0	No action				
	1	Reset Error				
	2 Reset Error and multi-to					

Table 3-11 encoder feedback parameter objects

Parameter index	Paramet er	Name	Unit	Range	Data type	Accessibilit y	PD O
0x2009-2B	P09.42	Number of encoder turns	Turn	0~65535	UINT16	RO	-
0x2009-2C	P09.43	Encoder single turn position	Encoder unit	0~(2 ³¹ -1)	INT32	RO	-
0x2009-2E	P09.45	Encoder absolute position Low 32 bits	Encoder unit	(-2 ³¹)~(2 ³¹ -1)	INT32	RO	-
0x2009-30	P09.47	Encoder absolute position High 32 bits	Encoder unit	(-2 ³¹)~(2 ³¹ -1)	INT32	RO	-

⚠ Note:

P09.43 is the encoder single-turn position, and its range is 0 to encoder resolution. In case of 23-bit encoder, the range is $0\sim(223-1)$;

P09.42/P09.43 are both encoder feedback data;

As P09.42 is an unsigned number, absolute position of absolute encoder is calculated as follows:

Encoder absolute position = $P09.42 \times encoder resolution + P09.43(P09.42 < 32768)$

Or

Encoder absolute position = (P09.42-65536) × encoder resolution + P09.43 (P09.42≥ 32768)

P09.45 and P09.47 are used to display the absolute position of encoder. The formula is as follows: absolute

encoder absolute position = P09.47 × 232+ P09.45.

(3) Precautions for absolute value system

If the battery is connected for the first time, E.917 (encoder battery Error) will occur. It requires to set P20.05=1 to reset the encoder Error, and then perform absolute position system operation;

If the detected battery voltage is less than 3.0V, E.921 (encoder battery Alarm) will occur. Please replace the battery; Ensure that the servo drive is powered on but not running when replacing the battery;

If the servo drive is powered off, the battery is detached or replaced, please use P20.05=1 to reset the encoder Error after powered-on, and then reset the original zero;

If the servo drive is powered off, Max. speed of the motor should not exceed 6000rpm, otherwise, encoder position data may be recorded improperly;

Please ensure that battery SOC and storage conditions do not damage the battery.

3.1.5 Setting of Electronic Gear Ratio

Servo drive

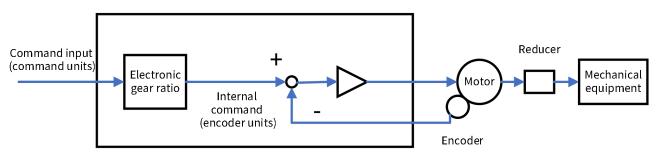


Figure 3-5 Electronic gear ratio

Electronic gear ratio: Electronic gear ratio is a simulated gear that converts control commands (command units) into actual motor displacement (encoder units), shown as the following formula:

Encoder unit = Command unit × Numerator of electronic gear ratio

Denominator of electronic gear ratio

Note: The control variables (non-state feedback variables) in object dictionary are based on command units. If the electronic gear ratio is set of 1:1, then 1 encoder unit is equal to 1 command unit.

Table 3-12 0x6091 electronic gear ratio

0x6091-electronic gear ratio					
Index - Subindex	0x6091-01 0x6091-02				
Data type	UINT32				
Accessibility	RW	RW			
Unit	-	-			
DeError value	1	1			
Min.	0	0			
Max.	2 ³² -1	2 ³² -1			
Setting and effective mode	Operation settings/downtime effective	Operation settings/downtime effective			
Related mode	CSP/PP/HM/CSV/PV				
Note	6091-01h: Numerator of electronic gear ratio				
Note	6091-02h: Denominator of electronic gear ratio				

3.1.6 Time sequence diagram

(1) Power on subsequence diagram

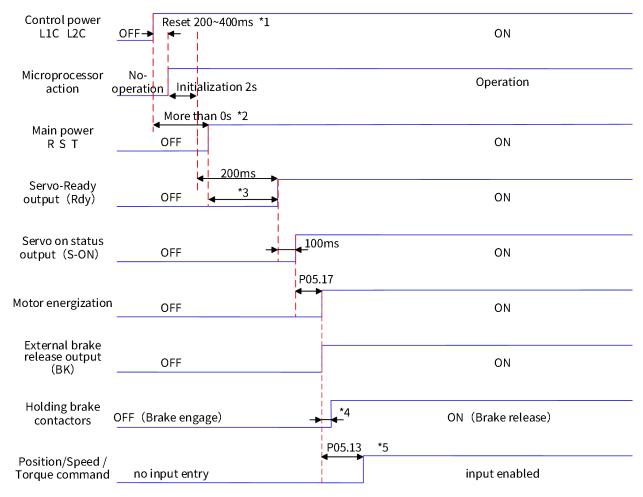


Figure 3-6 Power-on subsequence diagram

^{*1:} The reset time is determined by the establishment time of microprocessor and 5V power supply.

^{*2: 0}s above refers to the time determined by actual time when main power supply is turned on.

^{*3:} When control power supply and main power supply are powered on simultaneously, the time is the same as the period from the completion of microprocessor initialization to Rdy enabled.

^{*4:} Please refer to the relevant specification for delay time of Holding brake contact action.

^{*5:} When Holding brake enable switch (P05.12) is OFF, P05.13 has no effect.

(2) Stop sequence diagram when Alarm or Error occurs

A) Error 1: Free stop, maintain a free running state;

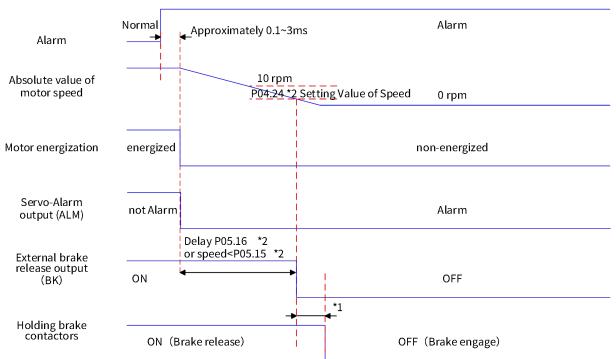


Figure 3-7 Sequence diagram of free stop and free running state during Error 1

^{*1:} Please refer to the relevant specifications for delay time of Holding brake contact action.

^{*2:} When the brake enable switch (P05.12) is OFF, P05.15 and P05.16 have no effect.

B)Error 2: Not a Holding brake. Free shutdown, maintaining a free running state.

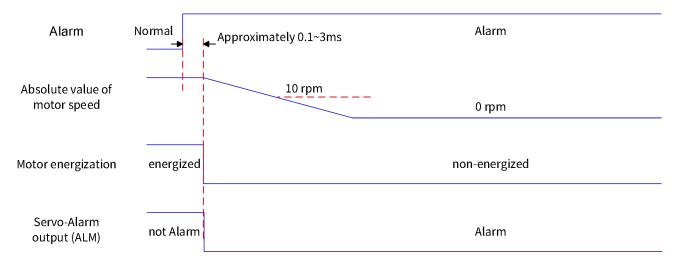


Figure 3-8 Sequence diagram of free stop and free running state during Error 2

C) Error 2: Not Holding brake: DB stop, maintain DB status

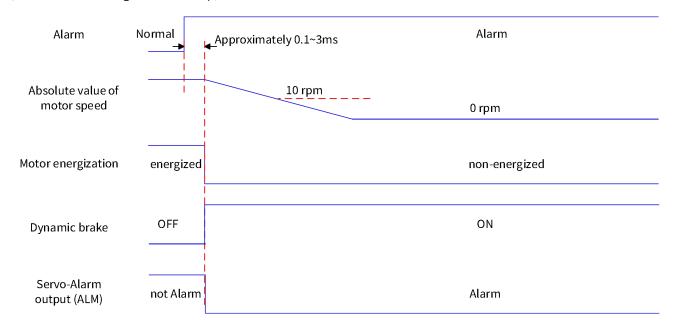


Figure 3-9 Sequence diagram of DB stop, maintain DB status during Error 2

D) Error 2: Not Holding brake: Zero speed stop, maintain free running status

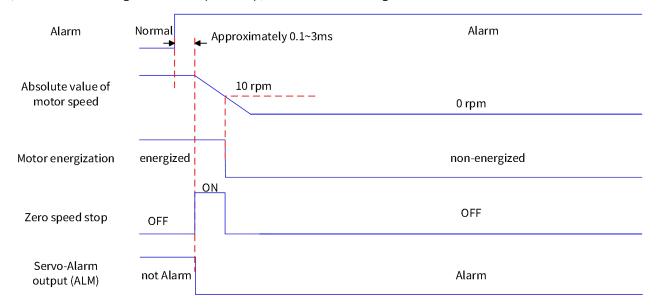


Figure 3-10 Sequence diagram of zero speed stop and free run state during Error 2 (not Holding brake)

E) Error 2 with Holding brake: forced to be zero speed stop, and maintain free run state

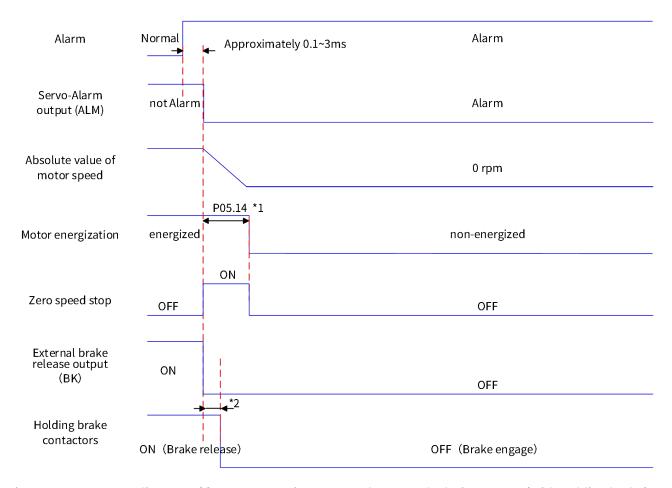


Figure 3-11 Sequence diagram of free stop state in zero speed stop mode during Error 2 (with Holding brake)

^{*1:} When the brake enable switch(P05.12) is OFF, P05.14 has no effect;

^{*2:} Please refer to the relevant specifications for delay time of Holding brake contact action.

When the servo encounters Type 3 Alarm: A.220 (forward overtravel Alarm)/A.221 (reverse overtravel Alarm), the current operating state of servo will be interrupted, and its stop sequency is shown in F).

F) Overtravel stop Alarm: Zero speed stop, maintain position latched state

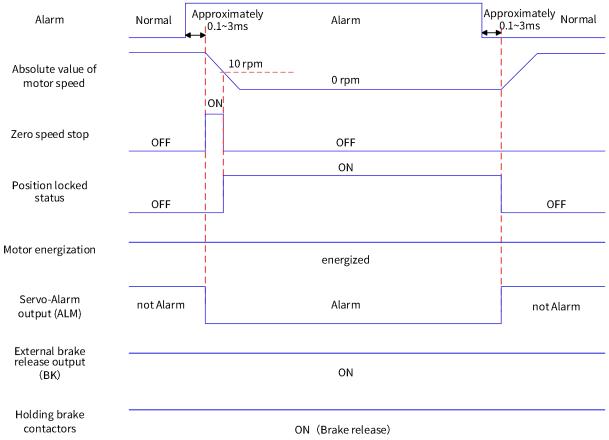


Figure 3-12 Timing diagram of shutdown Alarm

Except for the above two types of Class 3 Alarms, other Alarms have no impact on the current status of the servo, as shown in G).

G) Non shutdown Alarm:

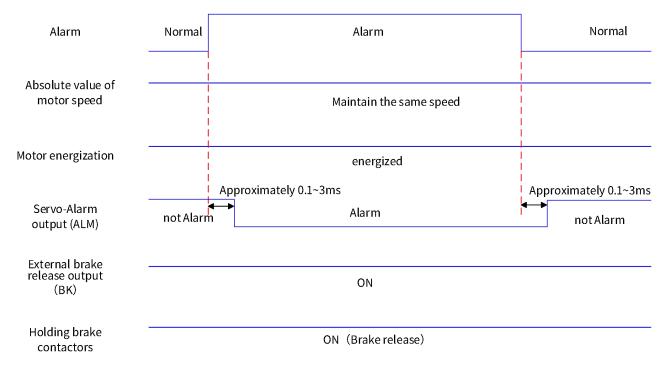


Figure 3-13 Non stop Alarm Sequence Diagram

H) Alarm reset:

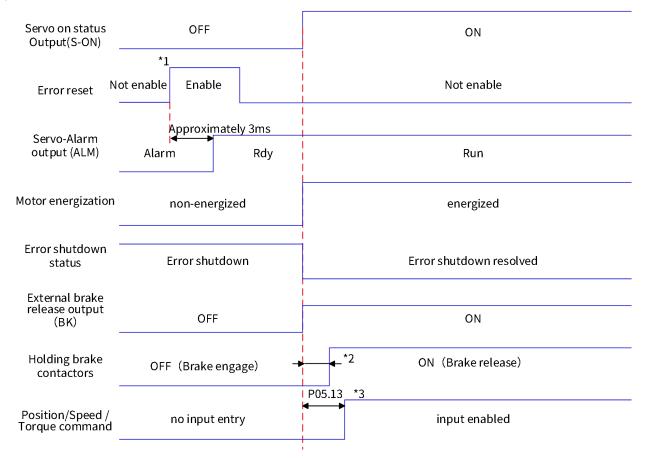


Figure 3-14 Error reset timing diagram

- *1: The DI Error reset signal (5: Error reset) is valid along the variation.
- *2: Please refer to the relevant specifications for delay time of Holding brake contact action.
- *3: When the brake enable switch (P05.12) is not turned on, P05.13 has no effect.

3.1.7 Operation

(1) Check before operation

Table 3-13 Check procedure before operation

Item	Content
Wiring inspection	Motor power line UVW line sequence (Special attention) Whether GND is loose or short-circuited with UVW Whether encoder cable is loose
Mechanical connection inspection	Check if there are strict requirements for the direction of motor rotation by the mechanical part which is connected to motor. It's recommended that the motor should be unloaded prior to 'safe operation' execution
Environmental inspection	Do not operate any motor in high temperature/humidity

(2) Safe operation

Table 3-14 Safe operation procedures

	rubte 5 2 i bare operation procedures			
Steps	Description			
Power on and	After the servo controller is powered on, the last 2-digit of panel displays 'ry' under			
confirm the Panel	normal conditions. If the panel flashes an alarm code, please troubleshoot it according			
display	to Chapter 5			
	1) Operate the drive motor according Section 3.2.2 JOG			
	2) Observe the direction of motor movement. If the direction is wrong, stop driving			
Law and water	the motor and check the drive parameters according to Section 3.2.1 Panel Introduction			
Low-speed rotation	3) Use Servo3 Designer oscilloscope to observe the speed waveform. If the speed is			
	incorrect, please check the electronic gear ratio setting according to section 3.1.5 or			
	correct the upper computer unit conversion			

(3) Operation

Table 3-15 Operational steps

Item	Description				
Mechanical	Please connect motor to load after 'safe operation' is executed correctly.				
connection	Multi-diaphragm coupler is recommended				
Inertia recognition	Set proper inertia ratio by inertia recognition function				
Cain adivistment	Adjust gain parameters, filter parameters, advanced adjustment parameters to realize				
Gain adjustment	high precision, high response speed control				
Operation under	Heatha drive for devices, write central program, and complete specific functions				
program	Use the drive for devices, write control program, and complete specific functions				

3.1.8 Stop

In order to meet the various working conditions of servo, servo drive supports different stop modes and stop states.

(1) Stop mode

Free stop: servo motor is not powered on, and the motor is free to reduce its speed to 0 by mechanical friction;

DB stop: stop the servo motor in motion state by the reverse braking torque provided by UVW 3-phase short-circuit;

Ramp stop: Smoothly stop according to pre-set position/speed/current ramp instructions;

Zero speed stop: servo drive outputs reverse braking torque, immediately set the target motor speed to zero and execute stop;

Emergency torque stop: servo drive outputs reverse braking torque and quickly reduces the motor speed to 0.

(2) Stop state

Hold position state: after the motor stops, the motor shaft is locked and can't rotate freely;

Free motion state: after the motor stops, the motor is not powered on, and the motor shaft can rotate freely;

Hold DB state: after the motor stops, the motor is connected to the drive, UVW 3-phase short-circuit, and the motor shaft can slowly rotate by external force.

(3) Stop condition

Servo drive supports the following stop conditions:

Table 3-16 Stop modes of SV3 servo drives

Stop condition	Settings of related parameter		Stop action and status	Description																
		0	Free stop, free																	
		0	movement	Stop conditions while type I failure																
Type I Error stop	P04.10	1	DB down, free	occurs																
		1	movement	occurs																
		2	DB stop, keep DB																	
		0	Free stop, free																	
	P04.11	0	movement																	
		1	Zero speed stop, free																	
			movement	Stop conditions while type II failure occurs																
Type II Error stop		.11 2	Zero speed stop. Keep																	
		2	DB																	
		3	DB down, free																	
																			movement	
																		4	DB stop, keep DB	
	P04.12	0	Free stop	Stop condition when servo drive																
Disable stop mode		P04.12	1	DB stop	stops enabling															
		2	Zero speed stop																	
Disable step state	P04.13	0	Free movement																	
Disable stop state		1	Hold DB																	

Danier off stars	D04.14	0	Stop by disabled mode	Stop condition when servo drive is
Power-off stop	P04.14	1	Zero speed stop	powered off
		0	Free stop, free	Stop condition when motor shaft
			movement	position exceeds the pre-set one
Overween stem	DO4 15	,	Zero speed stop,	which can be the position limit value
Overrun stop	P04.15	1	maintain the position	of the servo internal software or the
		2	Zero speed stop, free	position at external limit DI
			movement	triggering time
	605Ah	The stop method is different for each motion. For details, please		Stop when control word 6040h fast
Fast stop				stop position is valid
		refer to the object dictionary 605Ah		Condition
	605Dh	The stop method is different for		Ctop condition when controld
Pause		each motion. For details, please		Stop condition when control word
		refer to the object dictionary 605Dh		6040h pause position is valid

Table 3-17 0x605A - Fast Stop Mode Selection

Table 3-17 0x605A - Fast Stop Mode Selection						
	0x605A - Fast Stop Mode Selection					
Index - Subindex	0x605A-00					
Data type	UINT16					
Accessibility		Readable/writable				
Unit		-				
DeError value	2					
Min.		0				
Max.		7				
Setting and effective mode	Operation settings/downtime effective					
Related mode		ALL				
	Fast stop, when Bit2 of control word 6040h is valid, fast stop will be 6executed. Under the same set value, different stop modes have different stop methods as shown in the following table: PP:					
	Settings	Description				
	0	Free shutdown, maintain free run state				
	1	Ramp stop by 6084h, maintain free run state				
	2					
	<u> </u>	Ramp stop by 6085h, maintain free run state				
Note	3					
Note		Ramp stop by 6085h, maintain free run state				
Note	3	Ramp stop by 6085h, maintain free run state Emergency stop by P04.23 braking torque, maintain free run state				
Note	3 4	Ramp stop by 6085h, maintain free run state Emergency stop by P04.23 braking torque, maintain free run state NA				
Note	3 4 5	Ramp stop by 6085h, maintain free run state Emergency stop by P04.23 braking torque, maintain free run state NA Ramp stop by 6084h, maintain position latched state				
Note	3 4 5 6	Ramp stop by 6085h, maintain free run state Emergency stop by P04.23 braking torque, maintain free run state NA Ramp stop by 6084h, maintain position latched state Ramp stop by 6085h, maintain position latched state Emergency stop by P04.23 braking torque, maintain position				
Note	3 4 5 6 7	Ramp stop by 6085h, maintain free run state Emergency stop by P04.23 braking torque, maintain free run state NA Ramp stop by 6084h, maintain position latched state Ramp stop by 6085h, maintain position latched state Emergency stop by P04.23 braking torque, maintain position				
Note	3 4 5 6 7 CSP:	Ramp stop by 6085h, maintain free run state Emergency stop by P04.23 braking torque, maintain free run state NA Ramp stop by 6084h, maintain position latched state Ramp stop by 6085h, maintain position latched state Emergency stop by P04.23 braking torque, maintain position latched state				

2	
3	
4	NA
5	5
6	Emergency stop by P04.23 braking torque, maintain position
7	latched state

PV/CSV/HM

Settings	Description			
0	Free shutdown, maintain free run state			
1	Ramp stop by 6084h(HM: 609Ah), maintain free run state			
2	Ramp stop by 6085h, maintain free run state			
3	Emergency stop by P04.23 braking torque, maintain free run state			
4	NA			
5	Ramp stop by 6084h(HM: 609Ah), maintain position latched state			
6	Ramp stop by 6085h, maintain position latched state			
7	Emergency stop by P04.23 braking torque, maintain position latched state			

CST/PT

Settings	Description			
0	Free shutdown, maintain free run state			
1	D			
2	Ramp stop by 6087h, maintain free run state			
3	Free shutdown, maintain free run state			
4	NA			
5				
6	Ramp stop by 6087h, maintain position latched state			
7	Free stop, maintain position latched state			

Table 3-18 0x605D Pause Mode Selection

Table 3-10 0x000D Pause Mode Selection						
0x605D - Pause mode selection						
Index - Subindex	0x605D-00					
Data type	UINT16					
Accessibility		Readable/writable				
Unit		-				
DeError value		1				
Min.		1				
Max.	3					
Setting and effective						
mode		Operation settings/downtime effective				
Related mode	ALL					
	Pause, when Bit8 of control word 6040h is valid, pause will be executed. Under the					
	same setting value, different pause modes have different pause methods as shown in					
Note	the following table:					
	PP:					
	Settings	Description				

1	Ramp stop by 6084h, maintain position latched state				
2	Ramp stop by 6085h, maintain position latched state				
3	Emergency stop by P04.23 braking torque, maintain free run state				

CSP:

Settings	Description
1	5
2	Emergency stop by P04.23 braking torque, maintain position
3	latched state

PV/CSV/HM

Settings	Description				
1	Ramp stop by 6084h(HM: 609Ah), maintain position latched state				
2	Ramp stop by 6085h, maintain position latched state				
2	Emergency stop by P04.23 braking torque, maintain position				
3	latched state				

CST/PT

Settings	Description
1	Developed to Coo7ly and the coordinate of the co
2	Ramp stop by 6087h, maintain position latched state
3	Free stop, maintain position latched state

3.2 Panel Control Operation

3.2.1 Introduction of Panel

(1) Panel composition

SV3 servo panel consists of buttons and a digital display, which can be used for information and parameter display, parameter setting, user password setting, and general function execution.

(2) Button Introduction

Functions of each button are shown in the following figure:

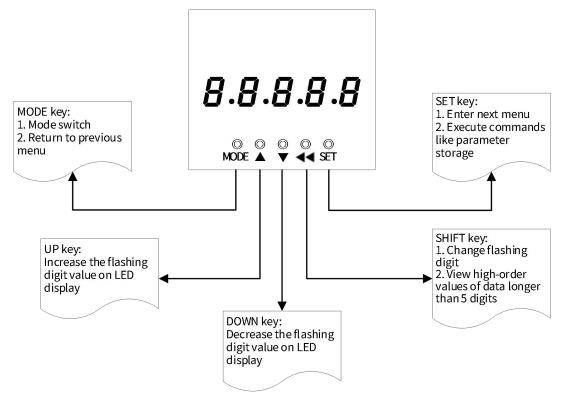


Figure 3-15 Introduction of Functions of Button

Take panel jog operation for example, the following case is for button usage:

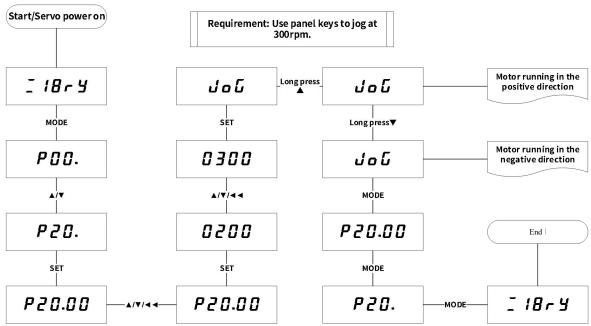


Figure 3-16 Case Operation and Display of Panel Jogging Operation

(3) Introduction of Panel Display

The panel display consists of 5-digit 7-segment digital tubes. When the servo drive is running, the display can be used for servo status display, parameter display, Error display and monitoring display.

(4) Type of Panel Displays

Table 3-19 Type of Panel Displays

Type of Displays	Function description	Entry method	Sample
Status Display the current status of the servo, e.g., servo ready, servo running, etc		 While power on, enter immediately; Under the parameter display, press MODE key to enter; Under the monitoring display, enter when the motor is stationary; 	racca
Parameter display	Display function code and the setting value	 Under the status display, press MODE key to enter; Under the monitoring display, press MODE key to enter; Under the Error display, first press SET key, then press MODE key to enter; 	P20.00
Error display	Display the Error/Alarm codes of servo	 Under the parameter display, press MODE key to enter; Enter when a Error occurs; 	E.9 10.1
Monitoring display	Display the current operating parameters of the servo	Under the parameter display, set function code of Group 21 and enter; Under the status display, set function code P05.03,	200

_			
- 1			
- 1			
- 1		i enter atter the motor runs:	
- 1		criter arter the motor rans,	

(5) Introduction of panel display content

Table 3-20 Status description

	Table 3-20 Status description							
Type of Displays		Disp	lay coı	ntent		Name	Display site	Meaning
	,-	ō		E	ō	rocco: servo initialization	Servo power-on moment	The servo drive is in initialization or reset state, waits for the completion of initialization or reset, and automatically enters other state
Status Display	Port comr	municati	as estabion connict has estabion connict has estabion connicts IN ancionmmun	lished nection ablished nection do communities tate machine state : Initia	ligit ication so of the slathine in relization peration operation	tatus: Displays ave's EtherCAT numerical form state al state nal state nal state nal state nal state	ard digit rol mode: Displays the cuating mode of the servo idecimal form, not flashing V T IM SP SSV	The servo drive is in the runnable state with port 1 established connection, communication initialization status, and periodic synchronization control mode the 4th-5th digits ervo ready result display: 3: Drive ready 5: Servo not ready. Servo initialization complete, but main reuit not powered, servo in on-operational state 6: Servo enable signal active, ervo running

Table 3-21 Parameter description

Type of Displays	Display content					Name	Display site	Meaning
Parameter display	Ţ,	اح	□ .			Function code:		P: function code
	;	2	3	4	5	Data (5 digits or below) Display:		
	-	1	ت	3	4	Negative data (4 digits or below) Display:		
	-	7	8	3		Data (above 5 digits) Display: 1234567		_: The lower four digits of multi-digit data -: The middle four digits of multi-digit data -: The top four digits of multi-digit data
	-	3	4	5	5			
				1	2			
	- •	7	8	3		Negative data (5 or more digits) Display: - 123456 7890		-: Indicates a negative sign -: The low four digits of multi-digit negative data -: The middle four digits of multi-digit negative data -: The top four digits of multi-digit negative data
		3	4	5	5			
	-		-	1	7			
		1		□ .		Decimal point Display:		.: Decimal point, non-flashing
	ī'	ū	n	E		Done: Parameter setting completed	Paramet er setting successf ul	Parameter setting completed, and stored into servo drive
	-	-	•	•	•	Parameter restored to factory settings	When using system paramet er initializa tion (P05.01), set of 1	The servo drive is in the process of parameter initialization. Please wait for the completion of system parameter initialization, and power it on for use

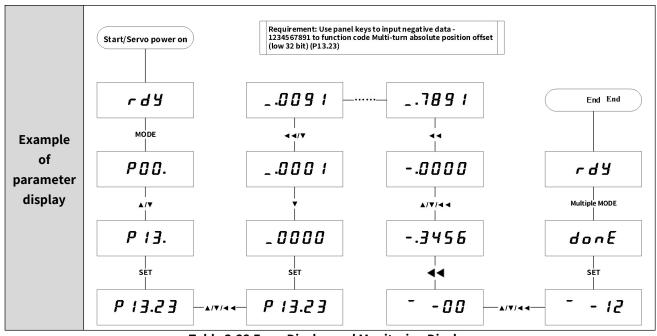
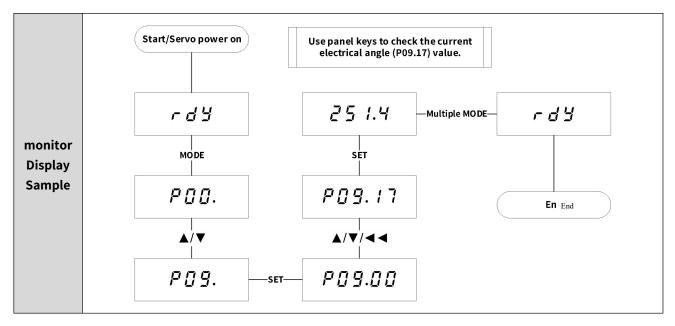



Table 3-22 Error Display and Monitoring Display

	Table 3-22 Error Display and Monitoring Display							
Display Type	Display content			Name	Display site	Meaning		
Error Display	E.		*	₽.		Error code:	Software parameter error	E::Error Before decimal point:error main code After decimal point: error sub code
Alarm Display	Ħ.	ي	ي	닉.	<u>I</u>	Alarm code: 유.근근목.0	Regenerative resistor overload	#: Alarm: Before decimal point: Alarm main code After decimal point: Alarm subcode
monitor Display		2	3	4	5	Current parameter value:		

3.2.2 Jog Operation

Before performing panel jog operation, please conduct a pre operation check on the servo system to confirm that the system is operating without interference. Connect the power supply, power on the servo system, and perform panel jog operation. The flowchart of panel jog operation is as follows:

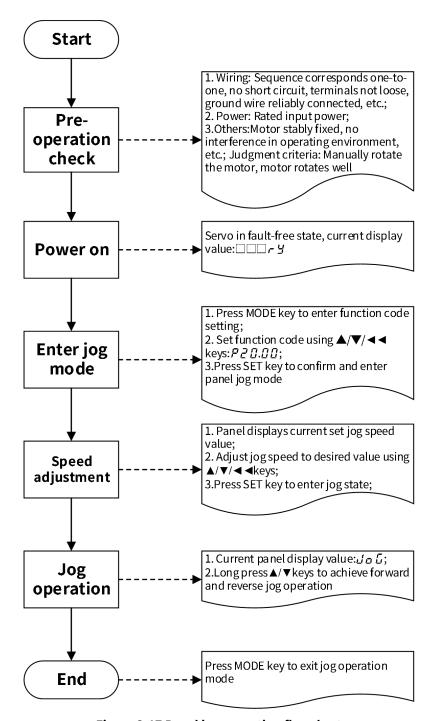


Figure 3-17 Panel jog operation flowchart

Use panel jog operation to confirm whether the servo system can operate normally, and whether there are any abnormal vibrations or sounds when the motor rotates.

3.3 Use the Servo3 Designer

Servo3 Designer is a debugging software for SV3 servo drives.

3.3.1 Overview

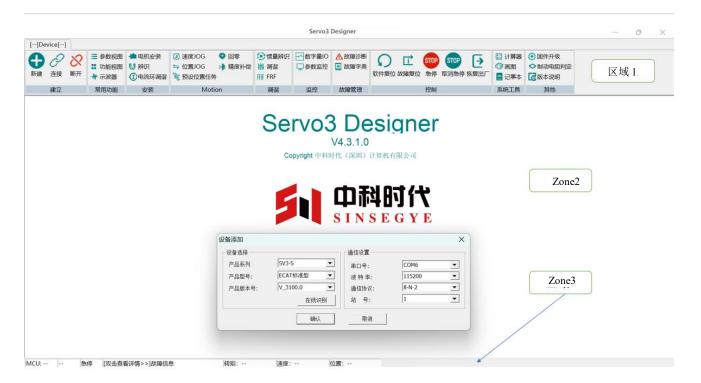


Figure 3-18 Main interface

The software is divided into three areas, as shown in the following figure:

Area 1: Toolbar area, entrance for servo debugging function, where users can click on relevant buttons to enter the corresponding function window;

Area 2: Function view layer, debugging function presentation area;

Area 3: Status bar area, displaying device status in real-time; Whether it is online, operating status, Error information, motor operation information, etc;

3.3.2 Operating Environment

This software is a green installation-free version.

Operational requirements

Hardware environment: PC

Operating System: Windows 7 x86&64 Windows10 x64、Windows11 x64

Dependency: Net Framework 4.5 and above

3.3.3 Parameter Management

Click on the toolbar to access the function code parameter setting interface.

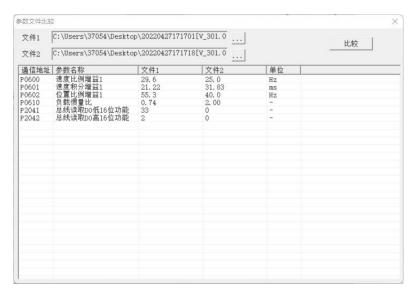



Figure 3-19 Parameter List

- Select all or none of the function codes on the current page;
- Open and save recipe file, saving recipe only saves the selected function codes on the current page;
- Parameter formula comparison function, shown as in the following figure:

Figure 3-20 Parameter Comparison

- The previous editing group and the next editing group;
- Restore factory settings;

View Area

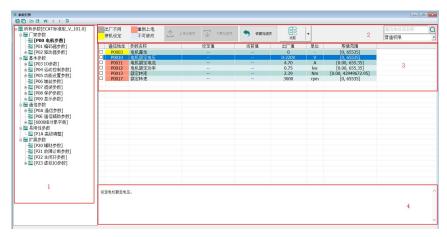


Figure 3-21 Parameter List View

1.Function code grouping area: from user's view, functional groups are divided to make it more convenient for users;

3.3.4 Oscilloscope

toolbar

- Open the waveform file, file format is csv;
- Save the current waveform file only, file format is csv;
- Take a screenshot of the current waveform display area, picture format is bmp;
- Measurement function: Click this button to perform measurement operations on the AB interval waveform by

Figure 3-22 Vernier measurement

0

Vernier function: After clicking this button, the mouse hovers over the waveform area to display the values of

each channel in the waveform at the current mouse position;

: Waveform amplification. Clicking this button will enable amplification function when the button is pressed down; Click the button again to disable the amplification function; Left click to circle the waveform and zoom in on the circled area;

Waveform Recovery: Click this button to restore the waveform to its original state;

Adaptive coordinate system. Clicking this button will automatically calculate Max./Min. values of the waveform for vertical axis adaptation;

FFT analysis: Click this button and use the left mouse button to circle the waveform area. When the left mouse button is lifted, the software makes FFT analysis and pops up the analysis result, identifies 3 resonance point frequencies shown as in the following figure:

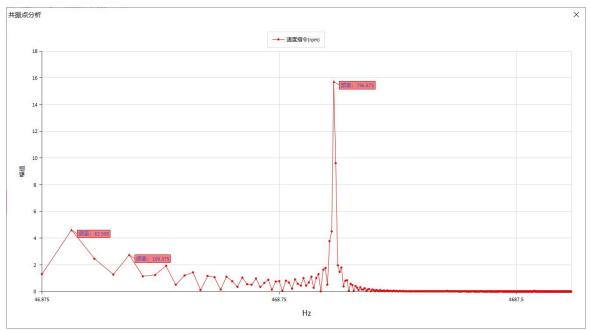
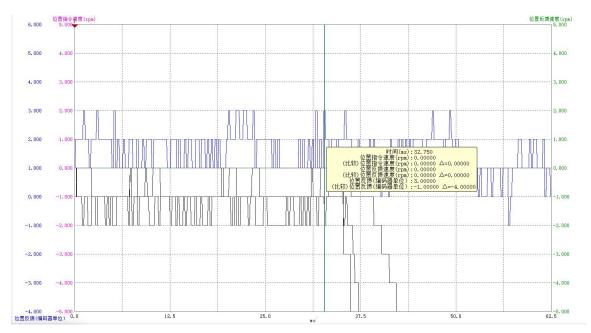



Figure 3-23 FFT resonance point analysis

Waveform comparison: Click this button and select the waveform to be compared, the waveform files in the file will be overlaid onto the existing waveform area

Figure 3-24 Waveform Comparison

: To cancel waveform comparison, click that button, the compared waveform is deleted from waveform area;

Configuration

Channel configuration: Oscilloscope supports up to four channels for acquisition. Users can quickly generate the corresponding channel configuration of its mode through such 3 buttons as "position acquisition", "speed acquisition" and "torque acquisition".

Sampling mode: Supports 2 ways of trigger sampling and continuous sampling.

Trigger sampling: The accuracy can be 1 times carrier frequency, but number of sampling points is few(1024 points per channel). Users can click Button "trigger condition" to enter trigger condition setting interface to set it; Continuous sampling: The precision of continuous sampling is millisecond level. It supports continuous sampling for a long time and wave form is automatically saved in Directory wavedata during sampling.

Figure 3-25 Sampling configuration interface

3.3.5 Initialization

(1) Motor parameter setting

Click the toolbar to set the parameters of the motor encoder:

Figure 3-26 Motor parameter management

Open the file: The formula of SV3 servo-related motor parameters has been integrated in the debugging software, and the user can directly select the formula corresponding to the motor model. Click the "Open" button after selecting the recipe as shown below.

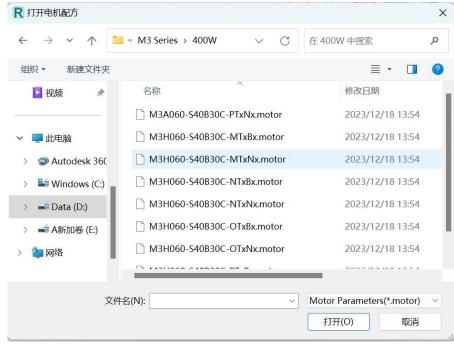


Figure 3-27 Opening the motor parameter formula

Save the file: by editing the parameter value column, edit the parameters, after editing, click the "save file"

button to save the motor formula;

Upload check: Read all motor parameters from the encoder;

Download check items: Check the parameters to be downloaded and click "Download" button to download the motor parameters to the encoder.

(2) Magnetic pole identification

This function is used to initialize the Angle of the motor during its initial operation.

Click toolbar to enter the magnetic pole identification interface:

Figure 3-28 Magnetic pole identification

(3) DI/DO monitoring

This function displays DI/DO function, status, and pin wiring information. It also supports forced DI/DO output and can make DI/DO simulation.

Figure 3-29 DI/DO monitoring

3.3.6 Commissioning

(1) Speed JOG

This function can be used to control motor rotation in jog mode to detect if the motor can run normally and if there is any abnormality during the rotation.

Click toolbar to enter the speed JOG interface:

Figure 3-30 Speed JOG

Steps are as follows:

- 1. Enter the parameters of motor operating speed and acceleration/deceleration time;
- 2. Click enable switch to enable the drive;
- 3. Long press Button "Long press forward" and Button "Long press reverse" with the left mouse key to control the motor to move forward and reverse; After releasing the mouse, stop running.

(2) Position JOG

This function is mainly used to control the motor to run in a reciprocating or fixed distance manner at a specified speed within a specified operating limit.

Click toolbar to enter the JOG interface:

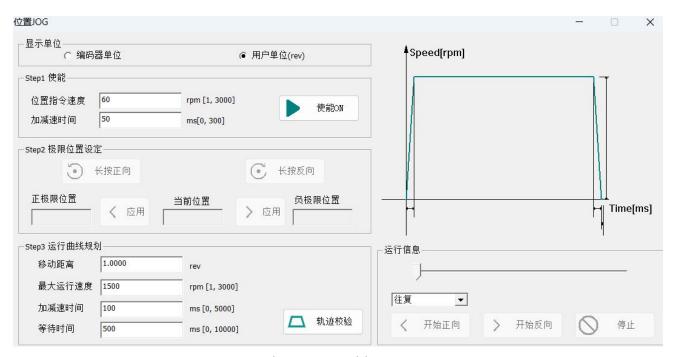
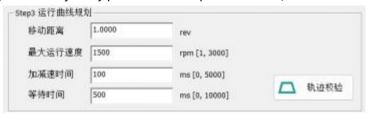


Figure 3-31 Position JOG

Steps are as follows:

1. Enter the parameters of motor operating speed and acceleration/deceleration time, and click Button Enable ON;


Figure 3-32 Enable ON

2. Setting of operating limit position: Long press Button Long-press Forward and Button Long-press Reverse with the left mouse key to set positive/negative limit positions

Figure 3-33 Setting of Positive/Negative Limit Positions

3. Operation curve planning: Set the trajectory parameters on operation curve;

Figure 3-34 Operating Curve Configuration

Click "Trajectory Verification" to generate a simulated curve;

Figure 3-35: Generation of Running Trajectory

4. Run

Single time: The motor moves a specified distance within the operating limit.

Reciprocating: The motor moves back and forth within the specified limit.

Click "Start Forward" and "Start Reverse" for launch; Click Button "Stop" to stop the motor;

Figure 3-36 Run

(3) Preset position task

This function supports users to preset multiple running trajectories, up to 16 segments.

Click toolbar to enter the preset position task interface:

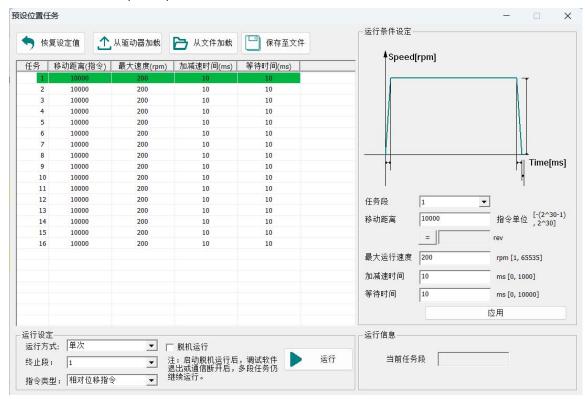


Figure 3-37 Position JOG

Steps are as follows:

1. Edit trajectory parameters for each segment: Select the specified task segment in the list, edit the running parameters, and click "Apply" to update the parameters to the list;

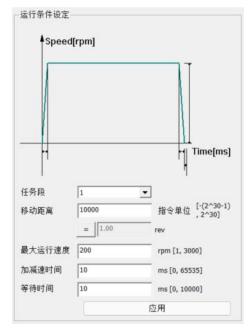


Figure 3-38 Position Segment Configuration

2. Operation settings

Operation mode: Support single and loop operations. Multi-stage position task can only run once in single mode; Multi-stage position task operates cyclically in loop mode;

Termination segment: The user can choose the number of segments to execute, and the program will run from the first segment to the termination segment;

Instruction type: Support relative displacement instruction and absolute displacement instruction;

Click 'Run' to start the multi-stage trajectory task, and the motor will run according to the preset trajectory;

Figure 3-39 Operation

(4) Return to Zero

This function supports 35 zeroing modes, and users can directly select the mode or generate corresponding zeroing modes based on the origin return method, starting direction, encountering limit trajectory, zeroing completion position, etc.

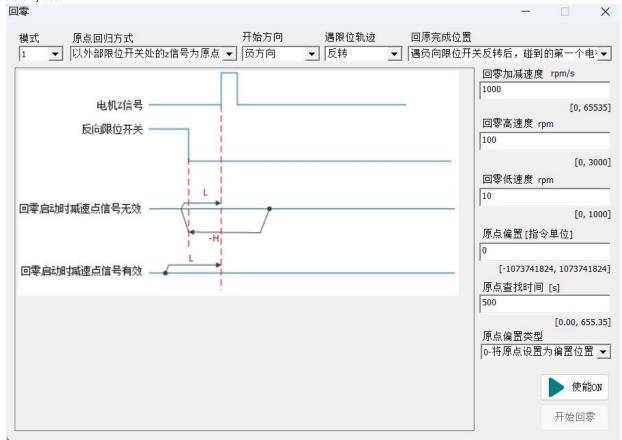


Figure 3-40 Zeroing

3.3.7 Tuning

(1) Offline inertia identification

This function is an offline inertia identification.

Click toolbar to enter the offline inertia recognition interface:

Figure 3-41 Inertia Identification

Steps are as follows:

- 1. Parameter settings: Set identification mode, maximum speed, acceleration time. The software supports 4 modes: "0: speed mode, forward/reverse operation", "1: speed mode, electric operation", "2: position mode, forward/reverse operation", and "3: position mode, unidirectional operation";
- 2. Click enable switch to enable the drive;
- 3. Long press the "Long press forward" and "Long press reverse" buttons with the left mouse button to identify inertia,
- 4. 推定惯量比 0.58 Real time display of the current identification result. If the change in the

identification results is small, it can be determined that the identification is complete. Click "Download" button to write the identification result to the drive.

(2) Gain adjustment

The software supports 2 gain adjustment modes: automatic gain adjustment and manual gain adjustment.

Automatic gain adjustment

Users can drag the slider with mouse or click "-" and "+" buttons to reduce or increase the rigidity level.

Figure 3-42 Rigid table settings

Manual gain adjustment

It supports both sine and step forms of command, supports the adjustment of the corresponding loop gain under 3 control modes of position/speed/torque.

Figure 3-43 Adjust the speed loop gain

(3) Frequency domain analysis -FRF

Frequency domain analysis supports 3 modes: velocity closed loop, velocity open loop, and mechanical characteristics.

Velocity closed loop: automatically calculate and label the amplitude bandwidth and phase bandwidth.

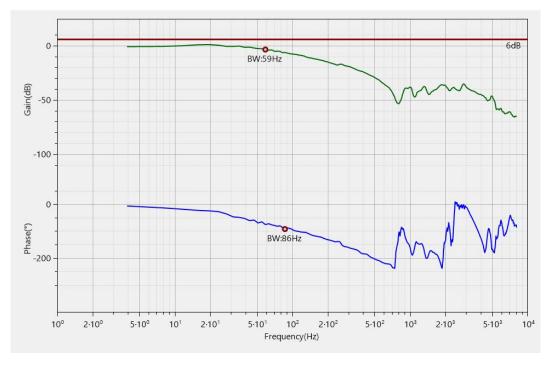


Figure 3-44 Velocity closed loop

Velocity open loop: automatically calculate and mark the amplitude margin and phase margin.

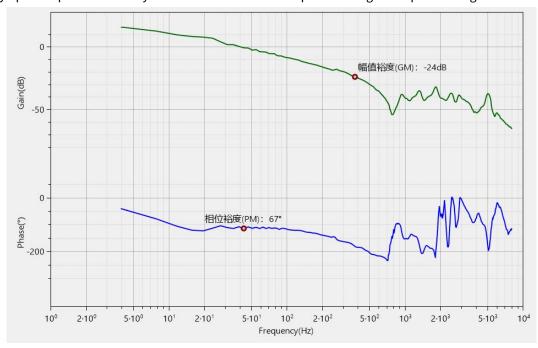
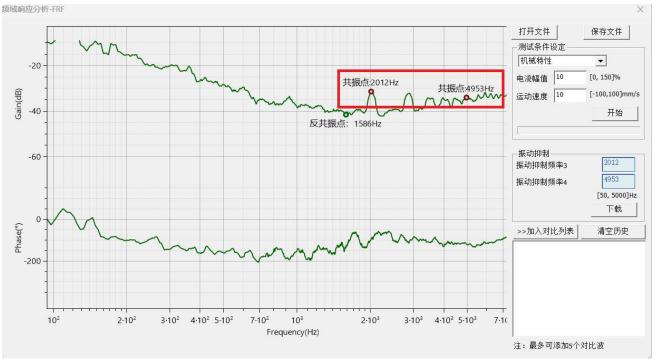



Figure 3-45 Velocity open loop

Mechanical characteristics: Automatic identification of resonance points and anti-resonance points. At present, the debugging software will automatically identify 2 resonance points. After identification, it will automatically update to the setting parameters of notch filter, and users can directly click download to write the identified

resonance point frequency to the drive.

Figure 3-46 Mechanical Characteristics

3.3.8 Troubleshooting

(1) Real time Error

In case of equipment Error, the debugging software status bar will prompt users in real time (as shown below). User can double-click the Error area to view the Error details. Error is marked in red and Alarm is marked in yellow.

Figure 3-47 Error prompt

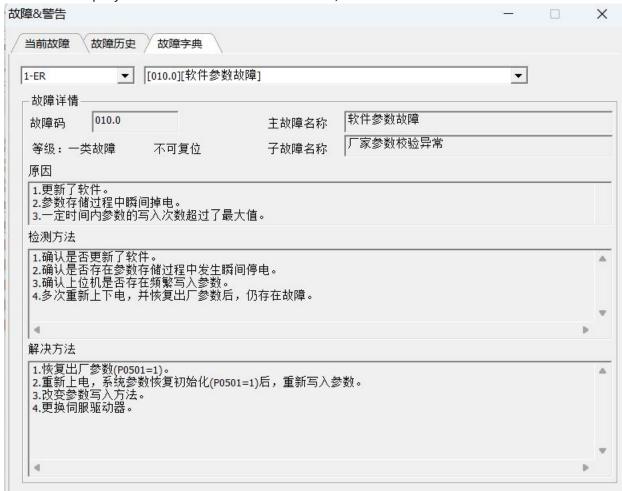
The Error details include: Error name, level, whether it can be reset, Error cause, detection method, and solution, etc., which facilitates users to quickly troubleshoot the Error.

Figure 3-48 Error Diagnosis

(2) Error History

This function supports querying the lastest 10 errors, information shown as above figure.

49Figure 3-49 Error History


Query button: query the recent failure history of the device, as shown in the above figure;

Clear button: Clear the historical Error records in the drive;

Select the historical list row with the mouse, and the relevant parameter information and troubleshooting of the selected Error will be displayed below the list;

(3) Error Dictionary

This function can query the Error information of all SV3 servos;

Figure 3-50 Error Dictionary

3.4 EtherCAT control operation

3.4.1 Running Status Control

(1) Status machine

The relationship between control word 6040h, status word 6041h, internal event and status machine is shown in the following figure: status switching can be performed through control words or internal events, and the current status can be read from status word.

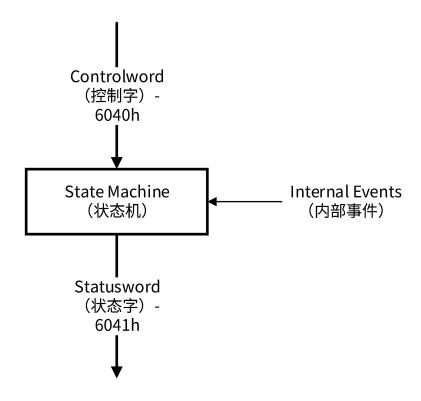


Figure 3-51 Overview of CiA402 Protocol

Status machine describes the device status and possible control sequence of drive. A single status represents a particular internal or external behavior. The status of drive also determines which command is received. For example, point-to-point movement can start only when the drive is in the 'operation enabled' state.

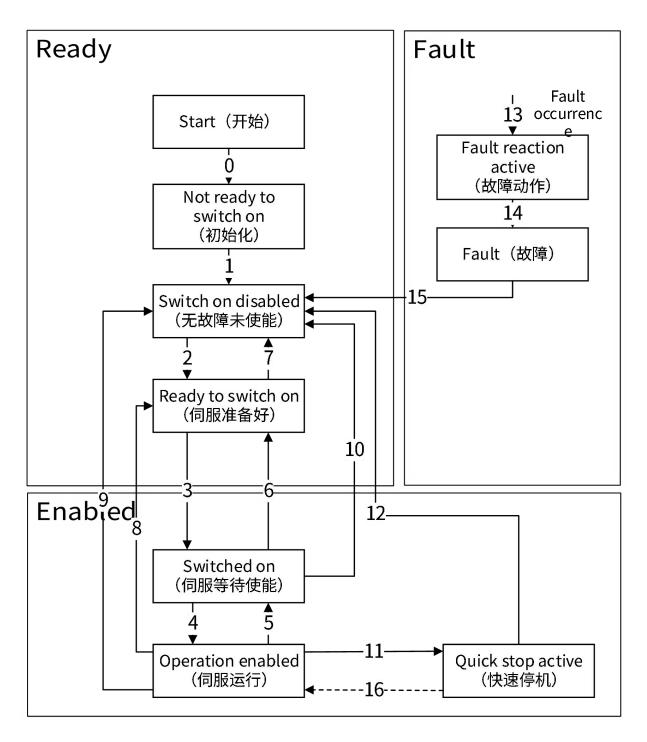


Figure 3-52 CiA402 Status Machine Switching Diagram

Table 3-23 Status Description

Status	Description
Initialization	Control electricity input of servo drive; Servo drive is initializing or self-checking; If Holding brake function exists, it's currently in operation; Driving function is invalid;
No Error, not enabled	Servo driver initialization is completed; Parameters of servo drive can be modified; Power electricity of servo drive is not input; Driving function is invalid;
Servo is ready	Power electricity input of servo drive; Parameters of servo drive can be modified; Driving function is invalid;
Servo waiting enable	Servo drive waits to be enabled;
Servo operation	Servo drive doesn't detect any Error; Motor power-on; Part of parameters of servo drive can be modified; Driving function is valid;
Fast stop	Perform rapid stop action; Motor power-on; Driving function is valid;
Error action	Servo drive detects a Error; Perform Error stop action; Motor power-on; Driving function is valid;
Error	Servo drive alarm; Potor power-off; Driving function is invalid;

Table 3-24 Control Commands and Status Switching

	:\ 102 -tt		3-24 Control Commands and Status Sw	ittiiiig	
	CiA402 status s	switching			
Seri		Termination	Event	Action	
al	status				
No.					
0	Start	Initialization	Reset	Servo self-test/initialization	
1	Initialization	No Error, not enabled	Self check/initialization successful	Activate communication	
2	No Error, not enabled	Servo is ready	Receive 'Shutdown' command from the master * 1	No	
3	Servo is ready	Servo waiting enable	Receive 'SwitchOn' command from the master	If no power electricity, input power electricity	
4	Servo waiting enable	Servo operation	Receive 'Enable Operation' command from the master	Driving function is valid	
5	Servo operation	Servo waiting enable	Receive 'Disable Operation' command from the master	Driver function is invalid	
6	Servo waiting enable	Servo is ready	Receive 'Shutdown' command from the master	Power off	
7	Servo is ready	No Error, not enabled	Receiving "Quick Stop" or "Disable Voltage" command from the master	No	
8	Servo operation	Servo is ready	Receive 'Shutdown' command from the master	Immediately power off. If no Holding brake is available, the motor will stop freely	
9	Servo operation	No Error, not enabled	Received 'Disable Voltage' command from the master	Immediately power off. If no Holding brake is available, the motor will stop freely	
10	Servo waiting enable	No Error, not enabled	Receiving "Quick Stop" or "Disable Voltage" command from the master	Immediately power off. If no Holding brake is available, the motor will stop freely	
11	Servo operation	Fast stop	Receive 'Quick Stop' command from the master	Perform rapid stop action	
12	Fast stop	No Error, not enabled	Quick Stop execution is completed or receive 'Disable Voltage' command from the master	Power off	
13	Arbitrary state	Error action	Error occurrence	Error execution stop	
14	Error action	Error	Error complete	Power off	
15	Error	No Error, not enabled	Error Reset command received from the host	For Error clearing, set the control word "Error Reset" of 0 after the	

CiA402 status switching						
Seri al No.	Initial status	Termination status	Event	Action		
				Error is cleared		
16	Fast stop	Operation enable	Receive 'Enable Operation' command from the master	Servo enable (need to set the fast stop mode to 5, 6, 7 or 8, please see the fast stop section)		

^{*1.} The master sends stop command through control word. Various logical combinations of 1 to 0 in different bit positions constitue different commands.

(2) Control word 6040h

25Table 3-25 Control word 6040h

	25Table 3-25 Control word 6040h					
		0x6040-	Control word			
Index - Subindex	0x6040-00					
Data type			UINT16			
Accessibility			Readable/writable			
Unit			-			
DeError value			0			
Min.			0			
Max.			65535			
Setting and effective mode		Operat	cion settings/downtime effective			
Related mode			ALL			
	Bit	Name	Description			
	0	Servo operation is available	Setting mode: 1-valid, 0-invalid			
	1	Switch on the main circuit	Setting mode: 1-valid, 0-invalid			
	2	Fast stop	Setting mode: 0-valid, 1-invalid			
	3	Servo operation	Setting mode: 1-valid, 0-invalid			
	4~6	For operation mode	Different operating modes have different meanings			
Note	7	Error reset	Reset Errors and Alarms that can be reset. Setting mode: Rising edge, if the value is 1, all the other control commands are invalid			
	8	Pause	The stop mode is different for each motion mode. For details, see object dictionary 605A			
	9	For operation mode	Different operating modes have different meanings			
	10	Reserved	Parameter reserved, no meaning temporarily			
	11~15	Manufacturer's custom	Manufacturer custom parameters			
	Control co	mmand				
	Com	mand	Control word			

	Bit7	Bit3	Bit 2	Bit 1	Bit0
Shut down	0	Χ	1	1	0
Switch on	0	0	1	1	1
Enable operation	0	1	1	1	1
Disable voltage	0	Х	Х	0	Х
Quick stop	0	Х	0	1	Х
Disable operation	0	0	1	1	1
Error reset	Rising edge	Χ	Х	Χ	Х

(3) Status word 6041h

	Та	ble 3-2	6 Status	word 60	41l	h				
		0x60	41- Stat	us word						
Index - Subindex				0x6	041	00				
Data type				UI	NT1	16				
Accessibility				Rea	ada	ble				
Unit					-					
DeError value					0					
Min.					0					
Max.				0~	655	35				
Setting and effective										
mode					-					
Related mode					ALL					
	Reflect servo state	е								
	Bit		Nam	e			ı	Descript	ion	
	0	Servo	is ready			Stat	us: 1- Val	id, 0- inva	alid	
	1	Servo availa	operation	on is		Stat	us: 1- Vali	id, 0- inva	alid	
	2	Servo	operatio	n		Status: 1- Valid, 0- invalid				
	3	Error				Status: 1- Valid, 0- invalid				
	4	The main circuit is ON				Status: 1- Valid, 0- invalid				
	5	Fast stop				Status: 0- valid, 1- invalid				
	6	Servo can't run				Status: 1- Valid, 0- invalid				
	7	Alarm				Status: 1- Valid, 0- invalid				
	8	Manufacturer's custom				Manufacturer custom parameters				ers
	9	Remote control				Status: 1- Valid, 0- invalid				
	10	Target arrival				Status: 1- Valid, 0- invalid				
Note	11	Interr	nal restric	tion valid	d	Status: 1- Valid, 0- invalid				
Note	12~13	For operation mode				Different operating modes have different meanings				
	14	Manu	facturer's	s custom		Man	ufacturer	custom	paramet	ers
	15	Origir	n found			Stat	us: 1- Val	id, 0- inva	alid	
	State feedback									
	2					St	atus wo	rd		
	Status		Bit6	Bit5	В	3it4	Bit3	Bit2	Bit1	Bit0
	initializatio	n	0	Х		Х	0	0	0	0
	No Error, not en	abled	1	Х		Χ	0	0	0	0
	Servo is read	dy	0	1		Χ	0	0	0	1
	Servo waiting e	nable	0	1		Х	0	0	1	1
	Servo operati	ion	0	1		Χ	0	1	1	1
	Fast stop		0	0		Χ	0	1	1	1
	Error action	1	0	Х		Χ	1	1	1	1
	Error		0	Х		Χ	1	0	0	0

3.4.2 PDO Configuration

PDO is divided into RxPDO and TxPDO. The master station sends instructions to the slave station through RxPDO, and the slave station feeds back its own status to the master station through TxPDO, as shown in the following figure.

Table 3-27 PDO communication

	Sending side	Receiving side
RxPDO	Master station	Slave station
TxPDO	Slave station	Master station

In practical applications, SV3 servo drive can only be used as a slave station, and the master station is usually PC or PLC. RxPDO sends control words, operation modes, speed commands, etc.; The servo drive feeds back status words, actual operation modes, speed actual values, and other status variables by TxPDO.

(1) PDO mapping

The mapping from object dictionary to the application object of PDO is called PDO mapping. (For PDO and SDO related, please refer to CANopen protocol manual)

SV3 servo provides 5 sets of fixed RxPDO and 4 sets of fixed TxPDO, as well as 1 set of variable RxPDO and 1 set of variable TxPDO. Max. application object has a data length of 32 bytes for each set of PDO. The fixed PDO is shown in the following table:

Table 3-28 Fixed PDO Mapping List (RxPDO)

RxPDO	Total number of bytes	Mapping objects
		6040h - Control Word
17016	12	607Ah - Target position
1701h	12	60B8h - probe function
		60FEh - digital output
		6040h - Control Word
		607Ah - Target position
		60FFh - target speed
1702h	19	6071h - target torque
		6060h - mode selection
		60B8h - probe function
		607Fh - maximum speed
	17	6040h - Control Word
		607Ah - Target position
		60FFh - target speed
1703h		6060h - mode selection
		60B8h - probe function
		60E0h - forward torque limit
		60E1h - reverse torque limit
		6040h - Control Word
		607Ah - Target position
		60FFh - target speed
1704h	23	6071h - target torque
170411	23	6060h - mode selection
		60B8h - probe function
		607Fh - maximum speed
		60E0h - forward torque limit

RxPDO	Total number of bytes	Mapping objects
		60E1h - reverse torque limit
		6040h - Control Word
		607Ah - Target position
	6060h - mode select 19 60B8h - probe fund	60FFh - target speed
170Fb		6060h - mode selection
1705h		60B8h - probe function
		60E0h - forward torque limit
		60E1h - reverse torque limit
		60B2h - torque bias

Table 3-29 Fixed PDO Mapping List (TxPDO)

Table 3-29 Fixed PDO Mapping List (TxPDO)							
TxPDO	Total number of bytes	Mapping objects					
		603Fh - error code					
		6041h - status Word					
		6064h - position feedback					
1B01h	28	6077h - torque feedback					
100111	20	60F4h - position deviation					
		60B9h - probe status					
		60BAh - probe 1 rising edge position					
		60FDh - DI status					
		603Fh - error code					
	25	6041h - status Word					
		6064h - position feedback					
		6077h - torque feedback					
1B02h		6061h - Mode Display					
		60B9h - probe status					
		60BAh - probe 1 rising edge position					
		60BCh - probe 2 rising edge position					
		60FDh - DI status					
		603Fh - error code					
		6041h - status Word					
		6064h - position feedback					
		6077h - torque feedback					
1B03h	29	60F4h - position deviation					
100311		6061h - Mode Selection					
		60B9h - probe status					
		60BAh - probe 1 rising edge position					
		60BCh - probe 2 rising edge position					
		60FDh - DI status					

TxPDO	Total number of bytes	Mapping objects
		603Fh - error code
		6041h - status Word
		6064h - position feedback
	20	6077h - torque feedback
1B04h		60F4h - position deviation
180411	29	6061h - Mode Selection
		60B9h - probe status
		60BAh - probe 1 rising edge position
		60BCh - probe 2 rising edge position
		606Ch - speed feedback

The variable PDO is shown in the following figure:

Table 3-30 Variable PDO Mapping List

PDO	Index	DeError mapping object	Remarks
	16001	6040h - Control Word	
D. DDO		607Ah - Target position	
RxPDO	1600h	60B8h - probe function	
		6060h operating mode	
	1A00h	603Fh - error code	
		6041h - status Word	May manning abjects of 10
		6061h - Current operating mode	Max. mapping objects of 10 The longest byte number is
TxPDO		6064h - position feedback	40
		60BCh - probe 2 rising edge	40
		position	
		60B9h - probe status	
		60BAh - probe 1 rising edge	
		position	
		60FDh - DI status	

(2) PDO allocation object

SM channel (SyncManager) is a memory segment on the slave control chip. In order to use PDO for data exchange, the list of PDO mapping objects must be switched to SM channel. As mentioned in the above section, SV3 has multiple sets of PDO mapping lists, but in practical application, one RxPDO and one TxPDO are selected for data exchange, as shown in the following table:

Table 3-31 SM Channel configuration

Index	Subindex	Description		
0x1C12h	01h	Select one RxPDO as the actual RxPDO		
0x1C13h 01h		Select one TxPDO as the actual TxPDO		

Note: RxPDO:0x1600h, 0x1701h~0x1705h are mapping lists and can be understood as a collection of partial data objects, 0x1C12h is to select a collection of data objects for the actual master-slave communication. The same goes for TxPDO.

3.4.3 Setting of Operation Mode

(1) Introduction of servo mode

SV3 servo drive supports 7 operating modes, Mode Control 6060h is used to control the servo operation in different control modes, and Mode Display 6061 is used to display the current control mode.

Table 3-32 Supported operating modes of SV3 servo drives

Control mode	Control Mode 6060h Setting Value	Minimum communication cycle
Profile position model	1	1ms
Profile velocity model	3	500μs
Profile torque mode	4	125µs
Cyclic synchronization position mode	8	1ms
Cyclic synchronization speed mode	9	500μs
Cyclic synchronization torque mode	10	125μs
The origin return model	6	1ms

Note: When the value is greater than 1ms, the synchronization cycle is an integer multiple of the position loop control cycle (the position loop control cycle is 250µs).

(2) Cyclic Synchronous Position(CSP)

In CSP mode, motion planning of the servo motor is completed by the master, and then the position command is sent to the servo drive periodically, and the communication cycle and sync mode are set by the master station.

Min. communication cycle of CSP is 1ms. If the communication cycle is greater than 1ms, ensure that the communication cycle is an integer multiple of the position loop control cycle(the position loop control cycle is

In CSP mode, use DC synchronization.

When the CSP mode is switched to other modes, the unexecuted position instruction will be discarded in any state.

When switching from other modes to cyclic synchronization mode in servo operation state, please wait at least 1ms before sending instructions, otherwise instruction loss or errors might occur.

Control block diagram

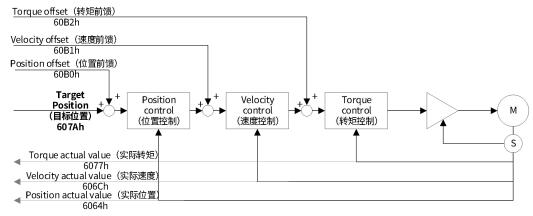


Figure 3-53 Overview of cyclic synchronization position mode

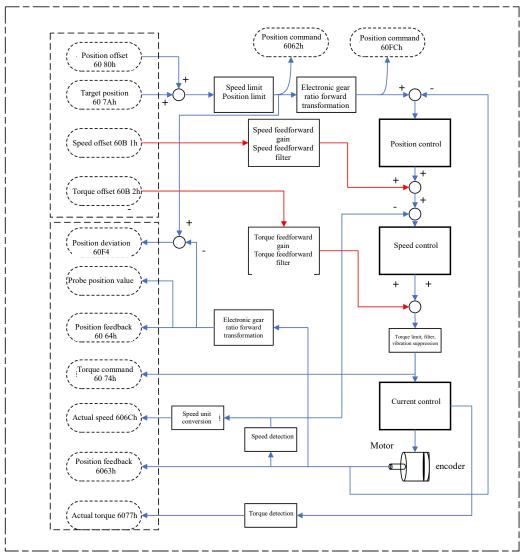


Figure 3-54 Block diagram of cyclic synchronization position mode

Related object (instruction * setting class)

Note: For detailed instructions on related objects, see Chapter 6 Object Dictionary. Common object:

33Table 3-33 0x6040- Control word

35 Table 5-35 0x0040- Control Word								
0x6040- Control word								
Index - Subindex		0x6040-00)					
Data type		UINT16						
Accessibility		Readable/writ	table					
Unit		-						
DeError value		0						
Min.		0						
Max.		65535						
Setting and effective		On suption 22th 22th 22th	antino a effectivo					
mode		Operation settings/downtime effective						
Related mode	ALL							
	In CSP mode,	only absolute position instruction i	s supported					
	Mode correla	tion: Bit0 to Bit3 are 1, indicating th	at the system is started					
	Bit	Name	Description					
	0	Servo is ready	Setting mode: 1-valid, 0-invalid					
Note	1	Switch on the main circuit	Setting mode: 1-valid, 0-invalid					
	2	Fast stop	Setting mode: 0-valid, 1-invalid					
	3	Servo operation	Setting mode: 1-valid, 0-invalid					
			0: invalid.					
	8	Pause	1: The servo is set pause by 605Dh.					

Table 3-34 Objects related to command Settings in CSP mode

	Table 3-34 Objects related to command Settings in CSP mode							
Index	Subind ex	Name	Unit	Range	Data type	Accessibili ty	PDO	
6040	00	Control word	_	0~65535	UINT16	RW	RxPDO	
6060	00	Servo mode selection	-	0~10	INT8	RW	RxPDO	
6065	00	Threshold of large position deviation	Instruction unit	0~(2 ³² -1)	UINT32	RW	RxPDO	
6067	00	Threshold of position arrival	Encoder unit	0~(2 ³² -1)	UINT32	RW	RxPDO	
6068	00	Position arrival window time	ms	0~65535	UINT16	RW	RxPDO	
6072	00	Maximum torque instruction	0.1%	0~5000	UINT16	RW	RxPDO	
607A	00	Target position	Instruction unit	-2 ³¹ ~(2 ³¹ -1)	INT32	RW	RxPDO	
	01	Motor resolution	-	1~(2 ³² -1)	UINT32	RW	RxPDO	
6091	02	Load shaft resolution	-	1~(2 ³² -1)	UINT32	RW	RxPDO	
60B0	00	Position bias	Instruction unit	-2 ³¹ ~(2 ³¹ -1)	INT32	RW	RxPDO	
60B1	00	Velocity bias	Instruction unit/s	-2 ³¹ ~(2 ³¹ -1)	INT32	RW	RxPDO	
60B2	00	Torque bias	0.1%	-5000~5000	INT32	RW	RxPDO	
	01	Velocity proportional gain 1	0.1Hz	1~20000	UINT16	RW	-	
	02	Velocity integral gain 1	0.01ms	15~51200	UINT16	RW	-	
2006	03	Position proportional gain 1	0.1Hz	0~20000	UINT16	RW	-	
	09	Speed feedforward proportional gain	0.1%	0~1000	UINT16	RW	-	
	0A	Torque feedforward proportional gain	0.1%	0~2000	UINT16	RW	-	
	03	Torque filtering 1	0.01ms	0~3000	UINT16	RW	-	
2007	07	Velocity feedforward filtering time	0.01ms	0~6400	UINT16	RW	-	
	08	Torque feedforward filtering time	0.01ms	0~6400	UINT16	RW	-	

Related objects (status * monitor class)

35Table 3-35 0x6041- Status words

0x6041- Status word							
Index - Subindex		0x6041-00					
Data type		U	INT16				
Accessibility		Re	adable				
Unit			-				
DeError value			0				
Min.			0				
Max.		6	5535				
Setting and effective							
mode			-				
Related mode			ALL				
	Reactive ser	vo state					
	For mode:						
	Bit	Name	Description				
	10	Target position arrival	Status display: 1- Arrived, 0- not arrived				
	11	The software internal	Status display: 1- overrun, 0- not overrun				
Note	11	position overrun	Status display. 1 Overrain, 6 not overrain				
	12	Follow instructions from	Status: 1- Follow, 0- not follow				
	the slave station		Status. 1-1 ottow, 0-110t lottow				
	13	Following error	Status display: 1- overrun, 0- not overrun				
	15 Return to zero completion		Status display: 1- completed, 0- not				
	13	Return to zero completion	completed				

Table 3-36 Status monitoring objects in CSP mode

Index	Subinde	Name	Unit	Range	Data type	Accessibili	PDO
	X					ty	
603F	00	Error code	-	0~65535	UINT16	RO	TxPDO
6041	00	Status word	-	0~65535	UINT16	RO	TxPDO
6061	00	Run mode display	-	0~10	INT8	RO	TxPDO
6062	00	Position instruction	Instruction unit	-	DINT32	RO	TxPDO
6063	00	Position feedback	Encoder unit	-	INT32	RO	TxPDO
6064	00	Position feedback	Instruction unit	-	INT32	RO	TxPDO
606C	00	Actual velocity	Instruction unit/s	-	INT32	RO	TxPDO
6077	00	Actual torque	0.1%	-5000~5000	INT16	RO	TxPDO
60F4	00	Position deviation	Instruction unit	-	DINT32	RO	TxPDO
60FC	00	Position	Encoder	-	DINT32	RO	TxPDO

	instruction	unit		

Related function Settings

A) Positioning is complete

If the difference between the actual position and the target position is within a certain threshold range and maintains for a certain time, the positioning completion DO is valid, and Bit10=1 of 6041.

A Note:

Both positioning completion threshold and completion window time must be met at the same time. The control block diagram is as follows:

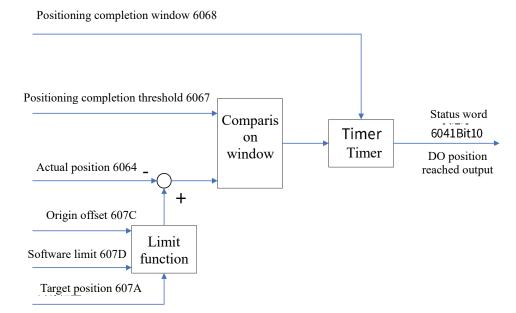


Figure 3-55 overview of CSP positioning completion

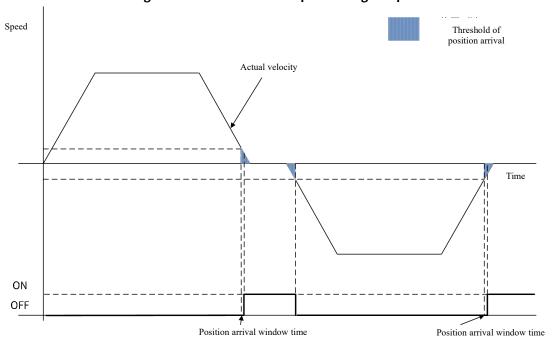


Figure 3-56 diagram of CSP mode positioning completion

4

Related object parameters are shown in the following table:

Table 3-37 objects related to CSP positioning completion

Index	Subindex	Name	Setting range
2012	0.0	Unit of position against threehold	0: encoder unit
2013	0C	Unit of position arrival threshold	1: command unit
6067	00	Positioning completion threshold	0~65535
5050	00	Positioning completion window	0 (5525
6068	00	time	0~65535

B) Threshold of garge position deviation

When the difference between the target position and the actual position exceeds a certain threshold, the servo drive will alarm.

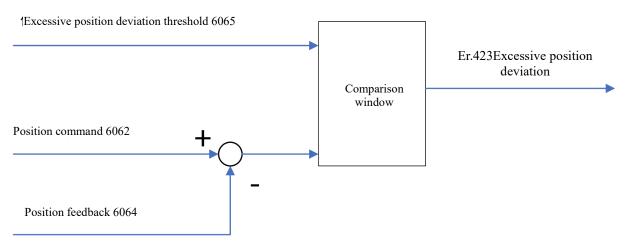


Figure 3-57 Overview of large CSP position deviation

Related object parameters are shown in the following table:

Table 3-38 Objects related to large CSP position deviation

Index	Subindex	Name	Setting range	
COCE	00	Threshold of large	0~(2 ³² -1)	
6065	00	position deviation	0~(2 -1)	

C) Position alignment

Before the servo is enabled, ensure that 607A (target position) +60B0 (position bias) is consistent with 6064 (actual position) so as to avoid high-speed motor movement due to misalignment, as shown in the following figure. Solution: The upper software periodically assigns the position feedback value to the target position.

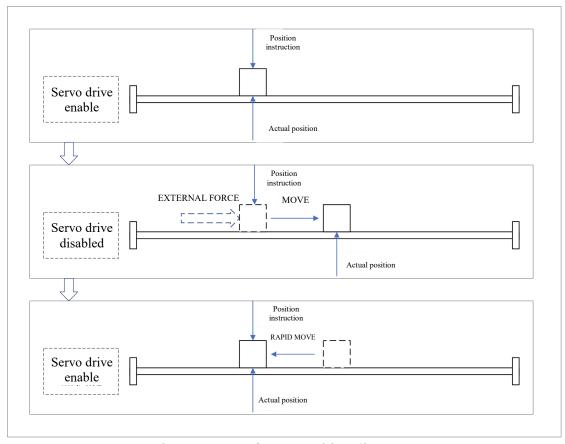


Figure 3-58 Case for CSP position alignment

(3) Cyclic Synchronization Speed(CSV) Mode

In cyclic synchronous speed mode, speed planning of the servo motor is completed by the master computer, and then the speed command is sent to the servo drive periodically, and the communication cycle and synchronization mode are set by the master station.

⚠ Note:

The minimum communication cycle of CSV mode is 500µs.

Please use DC synchronization in CSV mode.

When CSV mode is switched to other modes, perform ramp stop in any state, and when the stop is complete, it may switch to others.

Control block diagram

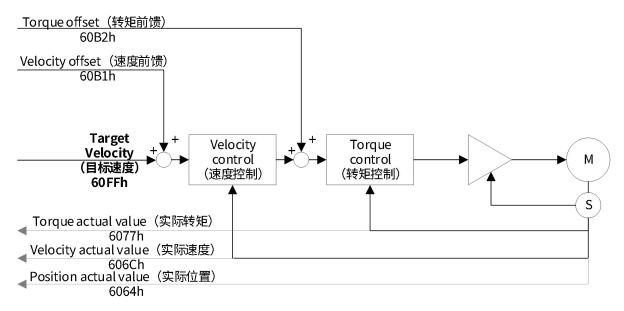


Figure 3-59 Cyclic Synchronization Velocity (CSV) overview diagram

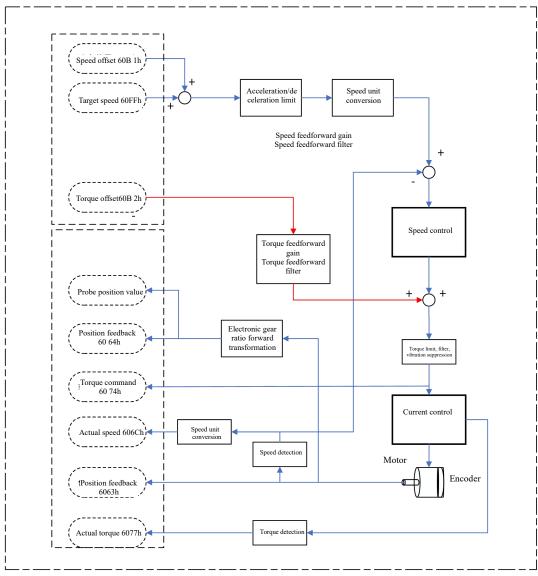


Figure 3-60 CSV block diagram

Related object (instruction * setting class)

Note: For detailed instructions on related objects, see Chapter 6 Object Dictionary. Common object:

Table 3-39 0x6040- Control word

	Table 3-39 0x6040- Control word					
0x6040- Control word						
Index - Subindex		0x6040-0	00			
Data type		UINT16	5			
Accessibility		Readable/wi	ritable			
Unit		-				
DeError value		0				
Min.		0				
Max.		65535				
Setting and effective		On a wation a atting and dis-	time of the still			
mode	Operation settings/downtime effective					
Related mode	ALL					
	In CSP mode, only absolute position instruction is supported					
	Mode correlation	: Bit0 to Bit3 are 1, indicating t	hat the system is started			
	Bit	Name	Description			
	0	Servo is ready	Setting mode: 1-valid, 0-invalid			
Note	1	Switch on the main circuit	Setting mode: 1-valid, 0-invalid			
	2	Fast stop	Setting mode: 0-valid, 1-invalid			
	3	Servo operation	Setting mode: 1-valid, 0-invalid			
	0	Davis	0: invalid.			
	8	Pause	1: The servo is set pause by 605Dh.			

Table 3-40 Commands set objects in CSV mode

Inde	Subind	Name	Unit	Range	Data	Accessibilit	PDO
х	ex	Nume	J.IIIC	Kunge	type	у	100
6040	00	Control word	-	0~65535	UINT16	RW	RxPDO
6060	00	Servo mode selection	-	0~10	INT8	RW	RxPDO
607F	00	Max. speed	Instruction unit /s	0~(2 ³² -1)	UDINT32	RW	RxPDO
6083	00	Profile acceleration	Instruction unit /s ²	0~(2 ³² -1)	UDINT32	RW	RxPDO
6084	00	Profile deceleration	Instruction unit /s ²	0~(2 ³² -1)	UDINT32	RW	RxPDO
60B1	00	Velocity bias	Instruction unit /s	-2 ³¹ ~(2 ³¹ -1)	INT32	RW	RxPDO
60B2	00	Torque bias	0.1%	-5000~5000	INT32	RW	RxPDO
60E0	00	Forward torque limit	0.1%	0~5000	UINT16	RW	RxPDO
60E1	00	Reverse torque limit	0.1%	0~5000	UINT16	RW	RxPDO
60FF	00	Target speed	Instruction unit /s	-2 ³¹ ~(2 ³¹ -1)	INT32	RW	RxPDO
	01	Velocity proportional gain 1	0.1Hz	1~20000	UINT16	RW	-
2006	02	Velocity integral gain 1	0.01ms	15~51200	UINT16	RW	-
	0A	Torque feedforward proportional gain	0.1%	0~2000	UINT16	RW	-
	03	Torque filtering 1	0.01ms	0~3000	UINT16	RW	-
2007	08	Torque feedforward filtering time	0.01ms	0~6400	UINT16	RW	-

Related objects (status * monitor class)

Table 3-41 0x6041- Status word

0x6041- Status word						
Index - Subindex		0x6041-00				
Data type		UI	INT16			
Accessibility		Rea	adable			
Unit			-			
DeError value			0			
Min.			0			
Max.		6	5535			
Setting and effective						
mode	-					
Related mode	ALL					
	Reactive servo state					
	For mode:					
	Bit	Name	Description			
Naka	10	Target speed arrival	Status display: 1- Arrived, 0- not arrived			
Note	12	Follow instructions	Status 1 Follow 0 not follow			
	12	from the slave station	Status: 1- Follow, 0- not follow			
	15	The origin return to	Status display: 1- completed, 0- not			
	15	zero is complete	completed			

42Table 3-42 Status monitoring objects in CSV mode

Index	Subindex	Name	Unit	Range	Data type	Accessibili ty	PDO
603F	00	Error code	-	0~65535	UINT16	RO	TxPDO
6041	00	Status word	-	0~65535	UINT16	RO	TxPDO
6061	00	Run mode display	-	0~10	INT8	RO	TxPDO
6063	00	Position feedback	Encoder unit	-	INT32	RO	TxPDO
6064	00	Position feedback	Instruction unit	-	INT32	RO	TxPDO
606C	00	Actual velocity	Instruction unit/s	-	INT32	RO	TxPDO
6077	00	Actual torque	0.1%	-5000~5000	INT16	RO	TxPDO

Related function Settings

A) Speed limit

Speed limit of motor is determined by Max. speed;

B) Speed arrival function

If actual speed exceeds the threshold of speed arrival signal and remains for a period, the speed arrival DO is valid and Bit10 = 1 of status word 6041.

Related object parameters are shown in the following table:

Table 3-43 CSV mode speed arrival function related objects

Index	Subindex	Name	Setting range
606Dh	00	the threshold of speed arrival	0~65535
606Eh	00	Speed arrives window time	0~65535

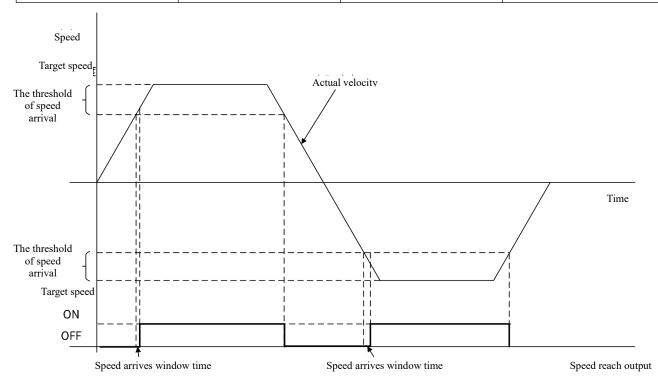


Figure 3-61 Diagram of CSV speed arrival function

(4) Cyclic Synchronous Torque(CST) Mode

In CST mode, motion planning of the servo motor is completed by the master computer, and then the torque command is periodically sent to the servo drive, and the communication cycle and synchronization mode are set by the master station.

Min. communication cycle of CST mode is 125μs.

Please use DC synchronization in CST mode.

When CST mode is switched to other modes, perform ramp stop in any state. After the stop is completed, it may switch to other modes;

In CST mode, the speed will enter the speed control when it reaches the limit.

Control block diagram

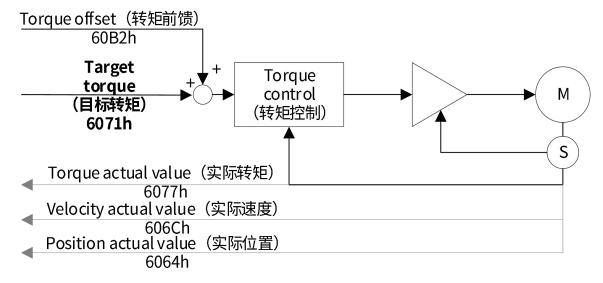


Figure 3-62 Overview of cyclic synchronous torque (CST)

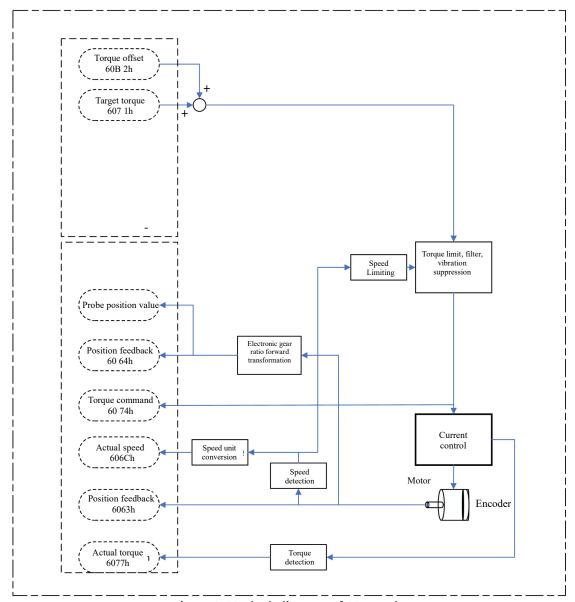


Figure 3-63 Block diagram of CST mode

Related object (instruction * setting class)

Note: For detailed instructions on related objects, see Chapter 6 Object Dictionary. Common object:

Table 3-44 0x6040- Control word

Table 3-44 0x6040- Control word				
	0x6040- Control word			
Index - Subindex	0x6040-00			
Data type	UINT16			
Accessibility	Readable/writable			
Unit	-			
DeError value	0			
Min.	0			
Max.	65535			
Setting and effective mode	Operation settings/downtime effective			
Related mode	ALL			

	In CSP mode, only	In CSP mode, only absolute position instruction is supported				
	Mode correlation:	Mode correlation: Bit0 to Bit3 are 1, indicating that the system is started				
	Bit	Name	Description			
	0	Servo is ready	Setting mode: 1-valid, 0-invalid			
Note	1	Switch on the main circuit	Setting mode: 1-valid, 0-invalid			
Note	2	Fast stop	Setting mode: 0-valid, 1-invalid			
	3	Servo operation	Setting mode: 1-valid, 0-invalid			
			0: invalid.			
	8	Pause	1: The servo is set pause by			
			605Dh.			

Table 3-45 Objects related to command settings in CST mode

Table 3-43 Objects related to command settings in CS1 mode							
Index	Subindex	Name	Unit	Range	Data type	Accessibili ty	PDO
6040	00	Control word	-	0~65535	UINT16	RW	RxPDO
6060	00	Servo mode selection	-	0~10	INT8	RW	RxPDO
6071	00	Target torque	0.1%	-5000~5000	INT16	RW	RxPDO
607F	00	Max. speed	Instructio n unit /s	0~(2 ³² -1)	UDINT32	RW	RxPDO
60B2	00	Torque bias	0.1%	-5000~5000	INT32	RW	RxPDO
60E0	00	Forward torque limit	0.1%	0~5000	UINT16	RW	RxPDO
60E1	00	Reverse torque limit	0.1%	0~5000	UINT16	RW	RxPDO
2006	01	Velocity proportional gain 1	0.1Hz	1~20000	UINT16	RW	-
	02	Velocity integral gain 1	0.01ms	15~51200	UINT16	RW	-
2007	03	Torque filtering 1	0.01ms	0~3000	UINT16	RW	-

Related objects (status * monitor class)

Table 3-46 0x6041- Status words

	0x6041- Status word				
Index - Subindex		0x6041-00			
Data type		UINT16			
Accessibility		Readable			
Unit		-			
DeError value		0			
Min.		0			
Max.	65535				
Setting and effective					
mode		-			
Related mode		ALL			
	Reactive servo sta	nte			
Note	For mode:				
Note	Bit	Name	Description		
	10	Target torque arrival	Status display: 1- Arrived, 0- not		

		arrived
12	Follow instructions from the	Status: 1 Follow 0 not follow
12	slave station	Status: 1- Follow, 0- not follow
15	The origin return to zero is	Status display: 1- completed, 0-
15	complete	not completed

Table 3-47 Status monitoring objects in CST mode

rubic 5 ii statas momenting objects in est mode							
Index	Subindex	Name	Unit	Range	Data type	Accessibility	PDO
6040	00	Control word	RW	UINT16	-	0~65535	TxPDO
603F	00	Error code	RO	UINT16	-	0~65535	TxPDO
6041	00	Status word	RO	UINT16	-	0~65535	TxPDO
6061	00	Run mode display	RO	INT8	-	0~10	TxPDO
606C	00	Actual velocity	RO	INT32	Instructio n unit /s	-	TxPDO
6074	00	Torque command	RO	INT16	0.1%	-5000~5000	TxPDO
6077	00	Actual torque	RO	INT16	0.1%	-5000~5000	TxPDO

Related function Settings

A) Speed limit

The speed limit is determined by the smaller value of 607Fh and Max. motor speed;

Table 3-48 Related objects of the speed limit in CST mode

Index	Subindex	Name	Setting range
607F	00	Max. speed	0~(2 ³² -1)

B) Torque arrival

When the difference between torque and reference value is greater than the value of 2015h:12, it outputs valid arrival signal TOQREACH, and Bit10 of status word 6041 is set of 1.

When the difference between torque and reference value is less than the value of 2015h:13, the output is invalid, and Bit10 of status word 6041 is cleared to zero.

Table 3-49 Objects related to torque arrival in CST mode

Index	Subindex	Name	Setting range	
2015	11	Reference value of	0. 2000 (it. 0.10/)	
2015	11	torque arrival	0~3000 (unit: 0.1%)	
2015	12	Torque arrival valid	0. 2000 /	
2015	12	value	0~3000 (unit: 0.1%)	
2015	12	Torque arrival invalid	0. 2000 /'t. 0.10()	
2015	13	value	0~3000 (unit: 0.1%)	

(5) Profile Position(PP) Mode

In PP mode, the upper controller specifies the target position, profile speed, profile acceleration, profile deceleration, etc. Motor motion planning is carried out inside the servo drive, suitable for point-to-point motion.

Note:

Min. communication cycle in PP mode is 1ms. If the communication cycle is set to more than 1ms, ensure that the communication cycle is an integer multiple of the position loop control cycle(the position loop control cycle is 250us).

When the PP mode is switched to other modes, any unexecuted position instruction would be discarded in any state.

Control block diagram

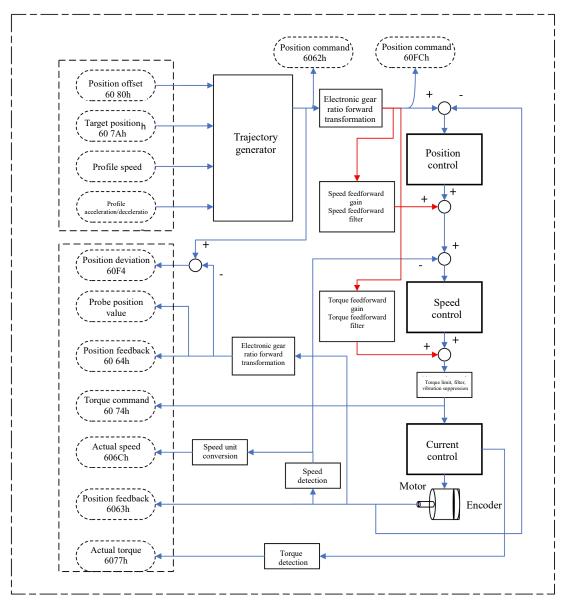


Figure 3-64 Block diagram of outline position mode

Related object (instruction * setting class)

Note: For detailed instructions on related objects, see Chapter 6 Object Dictionary. Common object:

Table 3-50 0x6040- Control word

0x6040- Control word

Index - Subindex		0x6040-00					
Data type		UINT16					
Accessibility	Readable/writable						
Unit	-						
DeError value	0						
Min.	0						
Max.		6	55535				
Setting and effective mode	Operation settings/downtime effective						
Related mode			ALL				
	In CSP mode, only absolute position instruction is supported Mode correlation: Bit0 to Bit3 are 1, indicating that the system is started						
	Bit	Name	Description				
	0	Servo is ready	Setting mode: 1-valid, 0-invalid				
	1	Switch on the main circuit	Setting mode: 1-valid, 0-invalid				
	2	Fast stop	Setting mode: 0-valid, 1-invalid				
	3	Servo operation	Setting mode: 1-valid, 0-invalid				
Note	4	New target location: New set-point	Effective mode: Rising edge				
	5	Change set immediately	0: Non-immediate change mode				
	3	Change set infinediately	1: Immediate change mode				
			0: Position instruction is an absolute				
	6	Absolute position /relative	position instruction				
		position abs/rel	1: Position instruction is a relative				
			position instruction				

Table 3-51 Objects related to instruction setting in PP mode

Tuble 3 31 Objects Tetated to mistratetion setting milit mode							
Index	Subinde x	Name	Unit	Range	Data type	Accessibili ty	PDO
6040	00	Control word	-	0~(2 ³² -1)	UINT16	RW	RxPDO
6060	00	Servo mode selection	-	0~65535	INT8	RW	RxPDO
6065	00	Threshold of large position deviation	Instruction unit	0~65535	UDINT32	RW	RxPDO
6067	00	Threshold of position arrival	Encoder unit	-2 ³¹ ~(2 ³¹ -1)	UINT32	RW	RxPDO
6068	00	Position arrival window	ms	0~(2 ³² -1)	UINT16	RW	RxPDO
607A	00	Target position	Instruction unit	0~(2 ³² -1)	INT32	RW	RxPDO
6083	00	Profile acceleration	Instruction unit /s ²	0~(2 ³² -1)	UDINT32	RW	RxPDO
6084	00	Profile deceleration	Instruction unit /s²	1~(2 ³² -1)	UDINT32	RW	RxPDO
6091	01	Motor resolution	-	0~5000	UINT32	RW	RxPDO
6091	02	Load shaft resolution	-	0~5000	UINT32	RW	RxPDO
60E0	00	Forward torque limit	0.1%	0~3000	UINT16	RW	RxPDO
60E1	00	Reverse torque limit	0.1%	1~20000	UINT16	RW	RxPDO

	01	Velocity proportional gain 1	0.1Hz	0~20000	UINT16	RW	-
02		Velocity integral gain 1	0.01ms	0~6400	UINT16	RW	-
2006	2006 03 09	Position proportional gain 1	0.1Hz	0~1000	UINT16	RW	-
		Speed feedforward proportional gain	0.1%	0~2000	UINT16	RW	-
	0A	Torque feedforward proportional gain	0.1%	0~65535	UINT16	RW	-
	03	Torque filtering 1	0.01ms	15~51200	UINT16	RW	-
2007	07	Velocity feedforward filtering time	0.01ms	0~6400	UINT16	RW	-
	08	Torque feedforward filtering time	0.01ms	0~(2 ³² -1)	UINT16	RW	-

Related objects (status * monitor class)

Table 3-52 0x6041 Status word

0x6041- Status word						
Index - Subindex	0x6041-00					
Data type		UIN	IT16			
Accessibility		Read	dable			
Unit			-			
DeError value			0			
Min.			0			
Max.		65	535			
Setting and effective						
mode	-					
Related mode	ALL					
	Reactive servo sta	ate				
	Mode related: After quick stop ends, Bit10 of status word 6041 is set as 1, and the servo					
	is in the stop\ state.					
	Bit	Name	Description			
Note	10	Target position arrival	Status display: 1- Arrived, 0- not arrived			
Note	12	Follow instructions	Status 1 Follow 0 not follow			
	12	from the slave station	Status: 1- Follow, 0- not follow			
	13	Following error	Status: 1- Error, 0- No error			
	15	The origin return to	Status display: 1- completed, 0- not			
	15	zero is complete	completed			

Table 3-53 Objects related to state monitoring in PP mode

Index	Subinde x	Name	Unit	Range	Data type	Accessibili ty	PDO
603F	00	Error code	-	0~65535	UINT16	RO	TxPDO
6041	00	Status word	-	0~65535	UINT16	RO	TxPDO
6061	00	Run mode display	-	0~10	INT8	RO	TxPDO
6062	00	Position instruction	Instruction unit	-	DINT32	RO	TxPDO

6063	00	Position feedback	Encoder unit	-	INT32	RO	TxPDO
6064	00	Position feedback	Instruction unit	-	INT32	RO	TxPDO
606C	00	Actual velocity	Instruction unit/s	-	INT32	RO	TxPDO
6077	00	Actual torque	0.1%	-5000~5000	INT16	RO	TxPDO
60F4	00	Position deviation	Instruction unit	-	DINT32	RO	TxPDO
60FC	00	Position instruction	Encoder unit	-	DINT32	RO	TxPDO

Related function Settings

A) Positioning is complete

If the difference between the actual position and the target position is within a certain threshold range and maintains for a certain time, the positioning completion DO is valid, and Bit10=1 of 6041.

🔼 Note:

It must meet simultaneously both positioning completion threshold and completion window time. Related object parameters are shown in the following table:

Table 3-54 Objects related to positioning completion in PP mode

Index	Subindex	Name	Setting range	
2012	0.0	Unit of position arrival		
2013	0C	threshold	1: encoder unit	
COC7	00	Threshold of position	0 65525	
6067	00	arrival	0~65535	
5050	00	Position arrival window	0 65525	
6068	00	time	0~65535	

B) Threshold of garge position deviation

When the difference between the target position and the actual position exceeds a certain threshold, the servo drive will alarm.

Related object parameters are shown in the following table:

Table 3-55 Objects related to excessive position deviation in PP mode

rable 5 55 objects related to excessive position deviation in 1 mode							
Index	Subindex	Name	Setting range				
6065	00	Threshold of large position deviation	0~(2 ³² -1)				

C) Speed limit

The speed limit is determined by the smaller value of 607Fh and Max. motor speed;

56Table 3-56 Objects related to speed limit in PP mode

Index	Subindex	Name	Setting range
607F	00	Max. speed	0~(2 ³² -1)

(6) Cases for PP action

A)Case 1: Basic set-point

- ①: Upper controller inputs new target position instruction;
- 2: 6040h control word Bit4 (New set-point) is set as 1;
- ③: Receive position instructions from the rising edge of control word Bit4 at 6040h, and start positioning, then set 6041h status word Bit12 (Set-point acknowledgement) of 1;
- ①: The master station confirms that 6041h status word Bit12 has been set of 1, and then sets 6040h control word Bit4 of 0, and it can receive new position instruction;
- ⑤: The slave statio confirms that 6040h control word Bit4 has been set of 0, and set 6041h status word Bit12 of 0;
- ⑥: Positioning completed, 6041h status word Bit10 positioning completed set to 1.

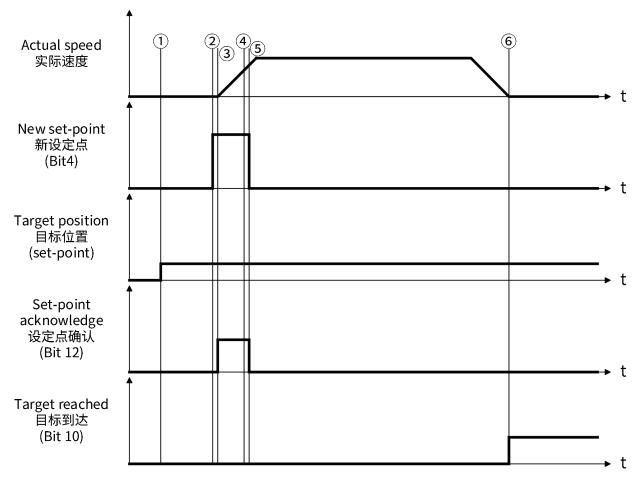


Figure 3-65 PP Mode Basic Set-Point

B) Case 2: Set of set-point (not immediate update mode)

- ①: The upper controller inputs the target position command;
- 2: 6040h control word Bit4 (New set-point) is set as 1;
- ③: Receive position instructions from the rising edge of control word Bit4 at 6040h, and start positioning, then set 6041h status word Bit12 (Set-point acknowledgement) of 1;
- ①: The master station confirms that 6041h status word Bit12 has been set of 1, and then sets 6040h control word Bit4 of 0, and it can receive new position instruction;
- ⑤: The slave station confirms that 6040h control word Bit4 has been set of 0, then set 6041h status word Bit12 of 0;
- 6: The upper controller inputs the target position command;
- 7: Set 6040h control word Bit4 (New set-point) of 1;
- 8: The slave station receives position command from the rising edge of 6040h control word Bit4, but not start positioning. Then set 6041h status word Bit12 (Set point acknowledgement) of 1;
- The master station confirms that 6041h status word Bit12 has been set of 1, and then sets 6040h control word Bit4 of 0, and it can receive new position instructions;
- A: After the completion of the first position command, the servo motor stops, the slave station sets 6041h status word Bit12 of 0, and starts a new positioning;
- B: Positioning completed, 6041h status word Bit10 positioning completed set of 1.

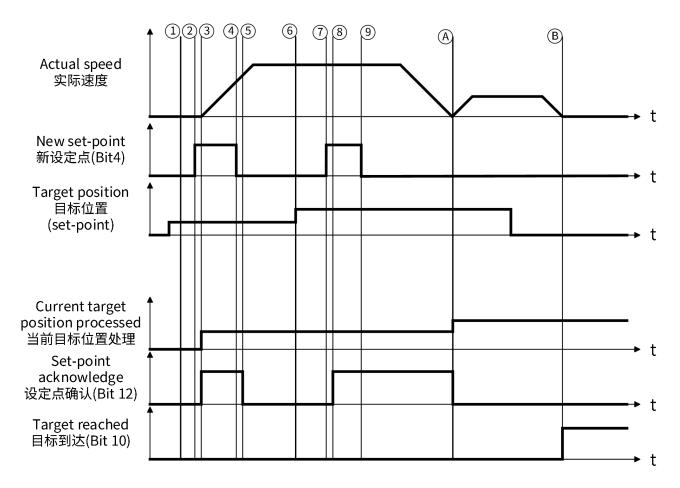


Figure 3-66 PP mode set of set-point (not immediate update mode)

C) Case 3: Single set-poinT (immediate update mode)

- 1: The upper controller inputs the target position command;
- 2: 6040h control word Bit4 (New set-point) is set as 1;
- ③: Receive position instructions from the rising edge of control word Bit4 at 6040h, and start positioning, then set 6041h status word Bit12 (Set-point acknowledgement) of 1;
- ①: The master station confirms that 6041h status word Bit12 has been set of 1, and then sets 6040h control word Bit4 of 0, and it can receive new position instruction;
- ⑤: The slave station confirms that 6040h control word Bit4 has been set of 0, then set 6041h status word Bit12 of 0;
- 6: The upper controller inputs the target position command;
- 7: Set 6040h control word Bit4 (New set-point) of 1;
- ®: The slave station receives position instructions on the rising edge of 6040h control word Bit4, executes new positioning with new instructions (profile speed, acceleration/deceleration, etc.), and then set 6041h status word Bit12 (Set-point acknowledgement) of 1;
- The master station confirms that 6041h status word Bit12 has been set of 1, and then sets 6040h control word Bit4 of 0, and it can receive new position instructions;
- A: The slave station confirms that 6040h control word Bit4 has been set of 0. Set 6041h status word Bit12 of 0;
- B: Positioning completed, 6041h status word Bit10 positioning completed set of 1.

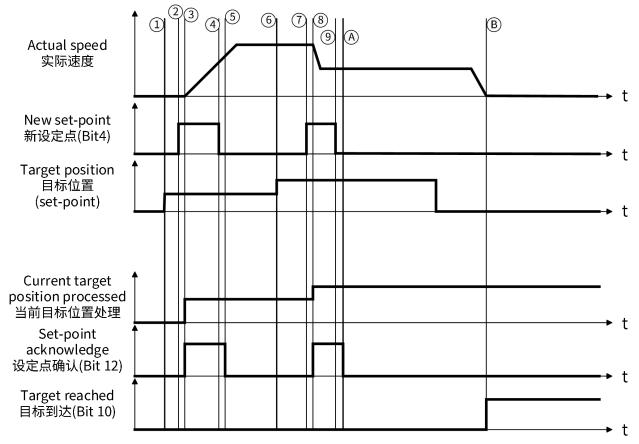


Figure 3-67 PP mode Single set-Point (immediate update mode)

D) Case 4: Relative motion and absolute motion

CSP mode only supports absolute position commands, while PP mode supports both absolute and relative position commands.

Absolute position command: After receiving the position command, the servo drive will drive the motor to make the actual feedback position consistent with the target position. After positioning is completed, the actual position of the servo motor remains consistent with the target position.

Relative position command: After receiving the position command, the servo drive will drive the motor to make the actual position increment fed back by the motor consistent with the target position. After positioning is completed, the actual position of the servo motor doesn't need to be consistent with the target position. Shown as in the following figure:

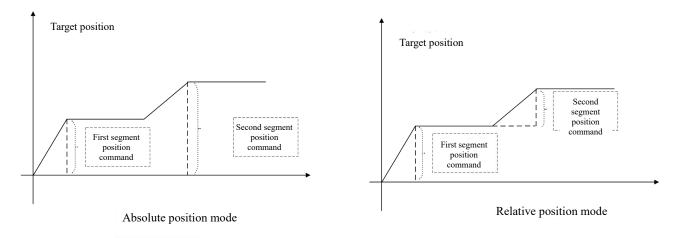


Figure 3-68 PPSchematic diagram of the difference between relative motion and absolute motion

(7) Profile Velocity(PV)

In PV mode, the upper controller specifies target speed, profile acceleration, profile deceleration, etc., and the servo drive performs motor motion planning internally.

A Note:

Min. communication cycle in PV mode is 500 μs;

When switching PV mode to other modes, perform ramp stop in any state, and after the stop is completed, it may switch to other modes.

Control block diagram

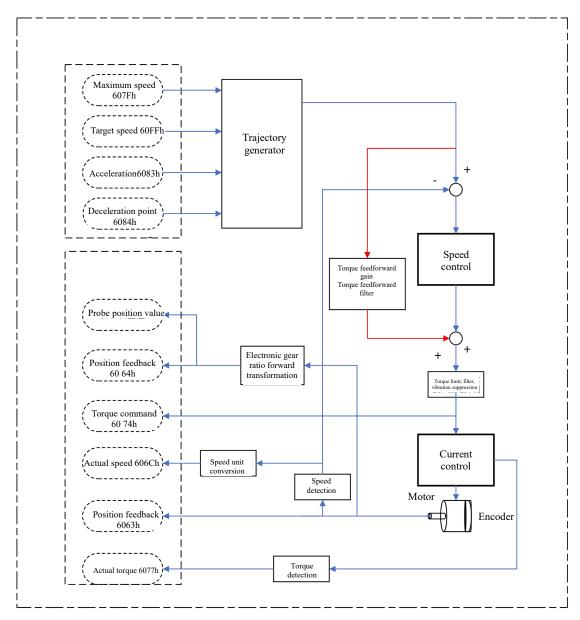


Figure 3-69 Control Block Diagram of Profile Velocity(PV)

Related object (instruction * setting class)

Note: For detailed instructions on related objects, see Chapter 6 Object Dictionary. Common object:

Table 3-57 0x6040- Control word

0x6040- Control word

Index - Subindex		0	x6040-00				
Data type		UINT16					
Accessibility		Readable/writable					
Unit			-				
DeError value			0				
Min.			0				
Max.			65535				
Setting and effective mode	Operation settings/downtime effective						
Related mode	ALL						
Retated illoue	ALL In CSP mode, only absolute position instruction is supported						
	Mode correlation: Bit0 to Bit3 are 1, indicating that the system is started						
	Bit	Name	Description				
	0	Servo is ready	Setting mode: 1-valid, 0-invalid				
Note	1	Switch on the main circuit	Setting mode: 1-valid, 0-invalid				
	2	Fast stop	Setting mode: 0-valid, 1-invalid				
	3	Servo operation	Setting mode: 1-valid, 0-invalid				
	0	Davisa	0: invalid.				
	8	Pause	1: The servo is set pause by 605Dh.				

58Table 3-58 0x6040- Control word

Index	Subinde x	Name	Unit	Range	Data	Accessibilit	PDO
C040	==	Control word		0 (5525	type	y DW	DyDDO
6040	00	Control word	-	0~65535	UINT16	RW	RxPDO
6060	00	Servo mode selection	-	0~10	INT8	RW	RxPDO
607F	00	Max. profile velocity	Instruction unit /s	0~(2 ³² -1)	UINT32	RW	RxPDO
60FF	00	Target speed	Instruction unit /s	$-2^{31}\sim(2^{31}-1)$	INT32	RW	RxPDO
60E0	00	Forward torque limit	0.1%	0~5000	UINT16	RW	RxPDO
60E1	00	Reverse torque limit	0.1%	0~5000	UINT16	RW	RxPDO
	01	Velocity proportional gain 1	0.1Hz	1~20000	UINT16	RW	-
2006	02	Velocity integral gain 1	0.01ms	15~51200	UINT16	RW	-
	0A	Torque feedforward proportional gain	0.1%	0~2000	UINT16	RW	-
	03	Torque filtering 1	0.01ms	0~3000	UINT16	RW	-
2007	08	Torque feedforward filtering time	0.01ms	0~6400	UINT16	RW	-

Related objects (status * monitor class)

Table 3-59 0x6041- Status word

	0x6041- Status word					
Index - Subindex	0x6041-00					
Data type	UINT16					
Accessibility	Readable					
Unit	-					
DeError value	0					
Min.	0					

Max.	65535						
Setting and effective							
mode							
Related mode		PST					
	Reactive servo state						
	For mode:						
	Bit	Name	Description				
Nata	10	Target speed arrival	Status display: 1- Arrived, 0- not arrived				
Note	11	The software internal	Status display: 1- overrun, 0- not				
	11	position overrun	overrun				
	15	The origin return to	Status display: 1- completed, 0- not				
	15	zero is complete	completed				

60Table 3-60 Objects related to state monitoring in PV mode

or table 3-00 objects related to state monitoring in 1 v mode							
Index	Subindex	Name	Unit	Range	Data type	Accessibili ty	PDO
603F	00	Error code	-	0~65535	UINT16	RO	TxPDO
6041	00	Status word	-	0~65535	UINT16	RO	TxPDO
6061	00	Run mode display	-	0~10	INT8	RO	TxPDO
6063	00	Position feedback	Encoder unit	-	INT32	RO	TxPDO
6064	00	Position feedback	Instruction unit	-	INT32	RO	TxPDO
606C	00	Actual velocity	Instruction unit/s	-	INT32	RO	TxPDO
6077	00	Actual torque	0.1%	-5000~5000	INT16	RO	TxPDO

Related function Settings

A) Speed limit

The speed limit is determined by the smaller value of 607Fh and Max. motor speed;

Table 3-61 Objects related to speed limit in PV mode

Index	Index Subindex		Setting range	
607F	00	Max. speed	0-(2 ³² -1)	

B) Speed arrival function

If the difference between target speed and actual speed is within a certain threshold and maintained for a period, the speed reaches DO valid and Bit10=1 of status word 6041.

Related object parameters are shown in the following table:

62Table 3-62 Objects related to speed arrival function in PV mode

oznable o oz objecto retateu to opecu unitat ranction in i i inoue							
Index	Index Subindex		Setting range				
606D	00	the threshold of speed arrival	0~65535				
606E	00	Speed arrives window time	0~65535				

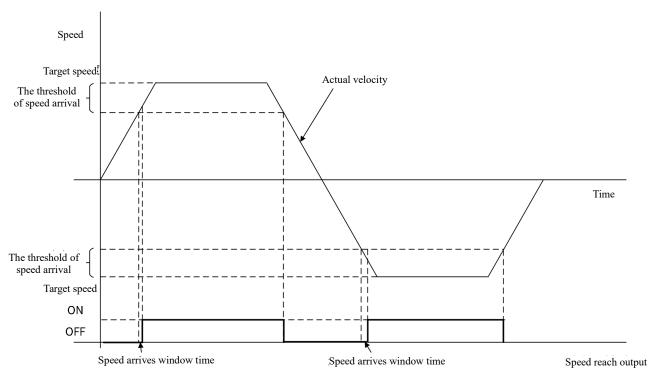


Figure 3-70 Schematic diagram of speed arrival in PV mode

(8) Profile Torque(PT)

In PT mode, upper controller specifies the target torque, torque slope, etc. Motor motion planning is performed inside servo drive.

Min. communication cycle in PT mode is 125μs;

When PT mode is switched to others, perform ramp stop in any state. After the stop is completed, it can switch

In CST mode, the speed will enter the speed control when it reaches the limit.

Control block diagram

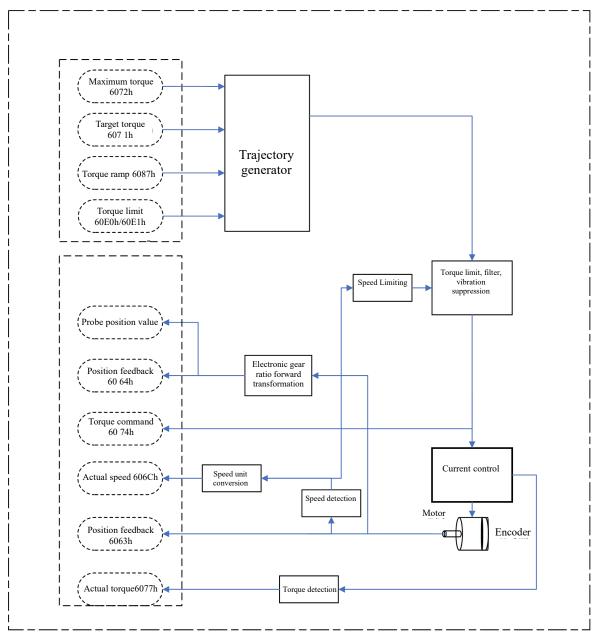


Figure 3-71 Control Block Diagram of Profile Torque(PT)

Related object (instruction * setting class)

Note: For detailed instructions on related objects, see Chapter 6 Object Dictionary. Common object:

Table 3-63 0x6040- Control word

0x6040- Control word						
Index - Subindex		0x6040-00				
Data type		UINT16				
Accessibility		Readable/writ	able			
Unit		-				
DeError value		0				
Min.		0				
Max.		65535				
Setting and effective mode	Operation settings/downtime effective					
Related mode	ALL					
	In CSP mode, onl	y absolute position instruction i	s supported			
	Mode correlation: Bit0 to Bit3 are 1, indicating that the system is started					
	Bit	Name	Description			
	0	Servo is ready	Setting mode: 1-valid, 0-invalid			
Note	1	Switch on the main circuit	Setting mode: 1-valid, 0-invalid			
	2	Fast stop	Setting mode: 0-valid, 1-invalid			
	3	Servo operation	Setting mode: 1-valid, 0-invalid			
	8	Pause	0: invalid.			
	0	rause	1: The servo is set pause by 605Dh.			

Table 3-64 Objects related to instruction settings in PT mode

				<u> </u>			
Index	Subind ex	Name	Unit	Range	Data type	Accessibili ty	PDO
6040	00	Control word	-	0~65535	UINT16	RW	RxPDO
6060	00	Servo mode selection	-	0~10	INT8	RW	RxPDO
6071	00	Target torque	0.1%	-5000~5000	INT16	RW	RxPDO
6072	00	Max. torque	0.1%	0~5000	UINT16	RW	RxPDO
607F	00	Max. profile velocity	Instruction unit /s	0~(2 ³² -1)	UINT32	RW	RxPDO
6087	00	Torque ramp	0.1%/s	0~(2 ³² -1)	UDINT32	RW	RxPDO
2007	03	Torque filtering 1	0.01ms	0~3000	UINT16	RW	-

Related objects (status * monitor class)

Table 3-65 0x6041- Status words

Table of the transfer of the t						
	0x6041- Status word					
Index - Subindex	0x6041-00					
Data type	UINT16					
Accessibility	Readable					
Unit	-					
DeError value	0					
Min.	0					
Max.	65535					
Setting and effective						
mode	-					

Related mode		ALL					
	Reactive ser	Reactive servo state					
	For mode:						
	Bit	Name	Description				
Note	10	Target torque arrival	Status display: 1- Arrived, 0- not arrived				
		The software internal position overrun	Status display: 1- overrun, 0- not overrun				
	15	The origin return to zero is complete	Status display: 1- completed, 0- not completed				

Table 3-66 Objects related to status monitoring in PT mode

		Tubic 5 00 Ob	ecto i ctatea t	o status illoilli			
Index	Subinde x	Name	Unit	Range	Data type	Accessibili ty	PDO
603F	00	Error code	-	0~65535	UINT16	RO	TxPDO
6041	00	Status word	-	0~65535	UINT16	RO	TxPDO
6061	00	Run mode display	-	0~10	INT8	RO	TxPDO
606C	00	Actual velocity	Instruction unit /s	-	INT32	RO	TxPDO
6074	00	Torque command	0.1%	-	INT16	RO	TxPDO
6077	00	Actual torque	0.1%	-	INT16	RO	TxPDO

Related function Settings

A) Speed limit

Speed limit in PT mode is set by 2007-12h.

Table 3-67 Objects related to speed limit in PT mode

DIE 62 Constituit source selection						
	P15.03- Speed limit source selection					
Index - Subindex	0x2015-04					
Data type			UINT16			
Accessibility		Rea	adable/writable			
Unit			1			
DeError value			0			
Min.			0			
Max.			65535			
Setting and		Onevetienes	ations / downstions off actions			
effective mode		Operation sei	ttings/downtime effective			
Related mode	ALL					
	Settings	Description				
		lakama al ama a al limaik	Forward speed limit: P15.05			
	0	Internal speed limit	Reverse speed limit: P15.06			
	1	EtherCAT External	Forward speed limit: min{607Fh, P15.07}			
Note	1	speed limits	Reverse speed limit: min{607Fh, P15.08}			
			DI(Function 13) invalid: Forward/reverse speed			
		Speed limiting is done in	is limited by P15.11			
	2	DI function 13	DI(Function 13) valid: Forward and reverse			
			speed is limited by P15.12			

B) Torque arrival

When the difference between the torque and the reference is greater than P15.17 value, the valid arrival signal TOQREACH is output, and Bit10 of status word 6041 is set of 1. When the difference between the torque and the reference is less than P15.18 value, the output is invalid, and Bit10 of status word 6041 is cleared to zero.

Table 3-68 Objects related to PT mode torque arrival

Index	Subindex	Name	Setting range
2015	11	Reference value of torque	0-3000 (unit 0.1%)
2013		arrival	0 0000 (d001270)
2015	12	Torque arrival valid value	0-3000 (unit 0.1%)
2015	12	Torque arrival invalid	0.2000 (:+ 0.10/)
2015	13	value	0-3000 (unit 0.1%)

C) Torque limit

Torque limit is the maximum limit of the servo output torque, applicable to position/speed/torque modes.

Table 3-69 P15.03 torque limit source selection

P15.03 Torque limit source selection					
Index - Subindex	0x2015-04				
Data type	UINT16				
Accessibility	Readable/writable				
Unit	1				
DeError value	2				
Min.	0				

Max.		4		
Setting and effective mode	Operation settings/downtime effective			
Related mode	ALL			
	Torque limiting source selection			
	Settings	Description		
		Forward internal torque limit: P15.05		
	0	Reverse internal torque limit: P15.06		
		Positive external torque limit:		
		When P-CL is valid: P15.07		
	1	When P-CL is invalid: P15.05		
	1	Reverse external torque limit:		
		When N-CL is valid: P15.08		
		When N-CL is invalid: P15.06		
	2	Forward torque limit: Min. in 6072h and 60E0h		
Note		Reverse torque limit: Min. in 6072h, 60E1h		
Note	3	Forward torque limit:		
		When P-CL is valid: Min. in P15.07, 6072h, 60E0h		
		When P-CL is invalid: Min. in 6072h and 60E0h		
		Reverse torque limit:		
		N-CL valid: Min. in P15.08, 6072h, 60E1h		
		When N-CL is invalid: Min. in 6072h and 60E1h		
		Forward torque limit:		
		When P-CL is valid: Min. in 6072h and 60E0h		
	4	When P-CL is invalid: P15.05		
	4	Reverse torque limit:		
		When N-CL is valid: Min. in 6072h and 60E1h		
		When N-CL is invalid: P15.06		

(9) Home Mode (HM)

HM refers to the operating mode in which the servo drive performs mechanical origin positioning upon external signal, at the given action speed.

After returning to zero, actual position feedback of motor = 607Ch (origin bias);

The mechanical origin can correspond to the origin switch signal, forward/reverse limit switch, and Z signal of motor;

There are various mechanical zeroing methods. If it is impossible to disconnect mechanical connection between motor and the equipment in actual application, please refer to "Introduction to Zeroing Methods" to choose the appropriate zeroing method, avoid the equipment damage; If the upper controller is used to return-to-zero, the reset methods in this Chapter will not be applicable. Please refer to the relevant zeroing introduction of the upper controller;

When the servo is in return-to-zero mode and running, it can't switch to other modes; When return-to-zero is completed or interrupted (Error or disabled), it can switch to other modes;

Please pay attention to the distance between limit switch and the forward/reverse limit switches; They should not be too close, and appropriate acceleration should be set. Otherwise, it might cause collision!

Control block diagram

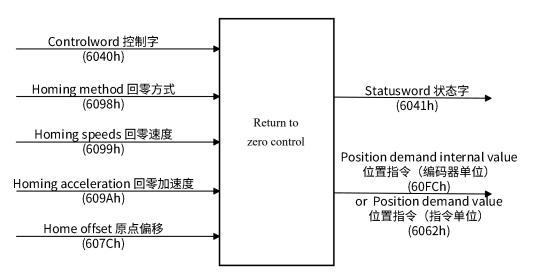


Figure 3-72 HM control block diagram

Related object (instruction * setting class)

Note: For detailed instructions on related objects, see Chapter 6 Object Dictionary. Common object:

Table 3-70 0x6040- Control word					
0x6040- Control word					
Index - Subindex	0x6040-00				
Data type	UINT16				
Accessibility	Readable/writable				
Unit	-				
DeError value	0				
Min.	0				
Max.	65535				
Setting and effective	Operation settings/downtime effective				
mode	89/ 40				
Related mode	ALL				
Note	In CSP mode, only absolute position instruction is supported				

Mode correlation: Bit0 to Bit3 are 1, indicating that the system is started				
Bit	Name	Description		
0	Servo is ready	Setting mode: 1-valid, 0-invalid		
1	Switch on the main circuit	Setting mode: 1-valid, 0-invalid		
2	Fast stop	Setting mode: 0-valid, 1-invalid		
3	Servo operation	Setting mode: 1-valid, 0-invalid		
		Start HM: rising edge		
4	Start HM	End HM: falling edge		
		HM in progress: constant as 1		
0	Barras	0: invalid.		
8	Pause	1: The servo is set pause by 605Dh.		

Table 3-71 Objects related to instruction setting in HM mode

Index	Subindex	Name	Unit	Range	Data type	Accessibili	PDO
6040	00	Control word		0~65535	UINT16	ty RW	RxPDO
0040	00		-	0~05555	OHVITO	KVV	KXFDO
6060	00	Servo mode selection	-	0~10	INT8	RW	RxPDO
6067	00	Threshold of	Encoder	0~65535	UINT32	RW	RxPDO
0007	00	position arrival	unit	0.03333	UINTSZ	INVV	KXPDO
6068	00	Position arrival	ms	ns 0~65535	UINT16	RW	RxPDO
0000	6068 00	window	ms 0~65535	0~05555		KVV	KXFDO
6000	6098 00	Origin return	-	-2~35	INT8	RW	RxPDO
0098		method				T. VV	KXFDO
		Deceleration					
	01	point of	Instruction	$0\sim(2^{32}-1)$	UINT32	RW	RxPDO
6099	01	high-speed	unit /s	0 (2 -1)			
0099		search					
	02	Search origin	Instruction	10~(2 ³² -1)	UINT32	RW	RxPDO
	02	low speed	unit /s	10 (2 -1)	UINTSZ	TVV	KXFDO
609A	00	acceleration	Instruction unit/s ²	0~(2 ³² -1)	UDINT32	RW	RxPDO
2013	32	Timeout period	10ms	100~65535	UINT16	RW	-

Related objects (status * monitor class)

Table 3-72 0x6041- Status word

0x6041- Status word							
Index - Subindex		0x6041	00				
Data type		UINT	16				
Accessibility		Reada	ble				
Unit		-					
DeError value		0					
Min.		0					
Max.	65535						
Setting and							
effective mode	-						
Related mode	ALL						
	Reactive servo state						
Note	For mode:						
	Bit	Name	Description				

	10	Target position arrival	Status display: 1- Arrived, 0- not arrived
	12	HM end	Status: 1- Succeeded, 0- failed
	13	HM error	Status: 1- Error, 0- No error
	15	The origin return to zero	Status display: 1- completed, 0- not
		is complete	completed

Table 3-73 Objects related to status monitoring in HM mode

Table 3-73 Objects retated to status monitoring in HM mode							
Index	Subind ex	Name	Unit	Range	Data type	Accessibili ty	PDO
603F	00	Error code	-	0~65535	UINT16	RO	TxPDO
6041	00	Status word	-	0~65535	UINT16	RO	TxPDO
6061	00	Run mode display	-	0~10	INT8	RO	TxPDO
6062	00	Actual position	Instruction unit	-	INT32	RO	TxPDO
6064	00	Position feedback	Instruction unit	-	INT32	RO	TxPDO
6077	00	Actual torque	0.1%	-5000~5000	INT16	RO	TxPDO
606C	00	Actual velocity	Instruction unit/s	-	INT32	RO	TxPDO
60F4	00	Position deviation	Instruction unit	-	UINT16	RO	TxPDO

Related function Settings

A) HM time limit

The zeroing time limit in zeroing mode is set by P13.49. If zeroing is uncompleted within this period, Alarm of zero return timeout (A.425) will be reported.

Table 3-74 Objects related to the time limit for the origin return

Index	Subindex	Name	Setting range
2013	32	Zero return timeout	0~65535 (unit: 10ms)

B) Calculation methods for position after zeroing completion

After the zero return mode is completed, the servo motor position is the mechanical origin, and the position feedback can be set of different calculation methods by 60E6h, as shown in the below table. Different calculation methods are applicable to different industrial machinery.

Table 3-75 0x60E6- Position Calculation Method

	0x60E6- Position calculation method					
Index - Subindex	0x60E6-00					
Data type	UINT8					
Accessibility	Readable/writable					
Unit		1				
DeError value		0				
Min.	0					
Max.	1					
Setting and effective mode	Operation settings/downtime effective					
Related mode	НМ					
	Settings Description					
Note	0	After return to zero is completed, actual feedback value of the origin position is the original bias 607C				
	1	After return to zero is completed, actual feedback value of the origin position is the original position feedback 6064 + the origin bias 607C				

Introduction on Zero Return Method

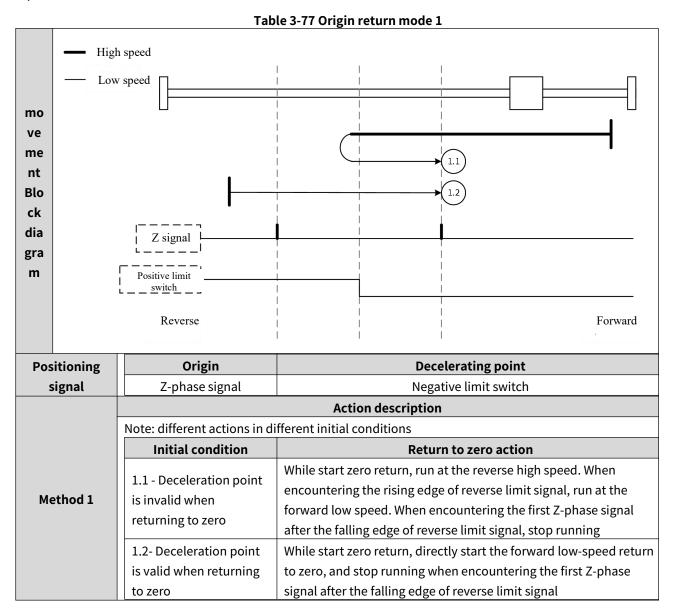

Zero Return Speed Setting

Table 3-76 Objects related to Zero Return Speed Setting

Index	Subindex	Name	Setting range
6099	01h	Deceleration point of high-speed search	0~(2 ³² -1)
	02h	Low-speed search for the origin	0~(2 ³² -1)

Note: In the following action description, high-speed operation refers to running at the speed set by 6099-01h, while low-speed operation refers to running at the speed set by 6099-02h. It can be understood as follows: high-speed operation searches for the deceleration point, after finding the deceleration point, low-speed operation searches for the origin.

I) Method 1:

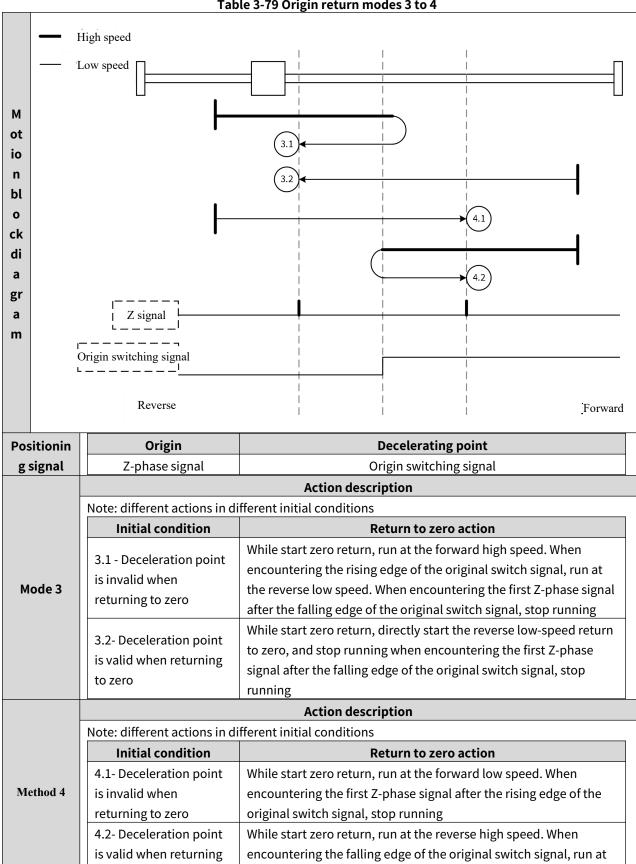
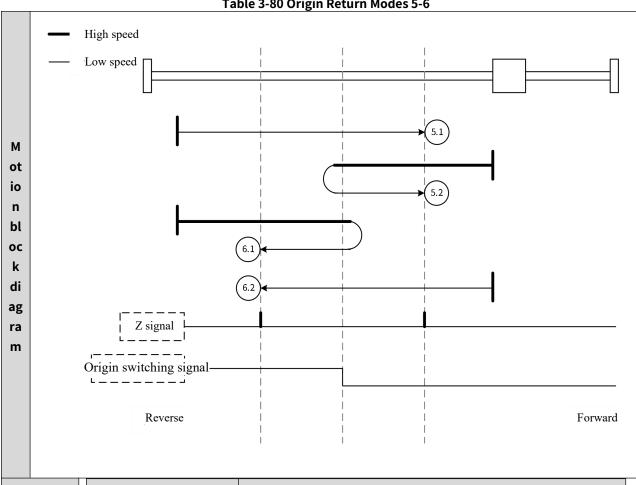

II) Method 2:

Table 3-78 Origin return mode 2 High speed m Low speed ov е m en 2.1 t Βl ос k Z signal di ag Home switch signal ra m Reverse Forward

Positioning	Origin	Decelerating point	
signal	Z-phase signal	Forward limit switch	
	Action description		
	Note: different actions in different initial conditions		
	Initial condition	Return to zero action	
Mode 2 is inverted is inverted is value.	2.1 - Deceleration point is invalid when	While start zero return, run at the forward high speed. When	
		encountering the rising edge of forward limit signal, run at the	
		reverse low speed. When encountering the first Z-phase signal	
	returning to zero	after the falling edge of forward limit signal, stop running	
	2.2- Deceleration point	While start zero return, directly start the reverse low-speed return	
	is valid when returning	to zero, and stop running when encountering the first Z-phase	
	to zero	signal after the falling edge of forward limit signal	

III) Methods 3 to 4:

Table 3-79 Origin return modes 3 to 4

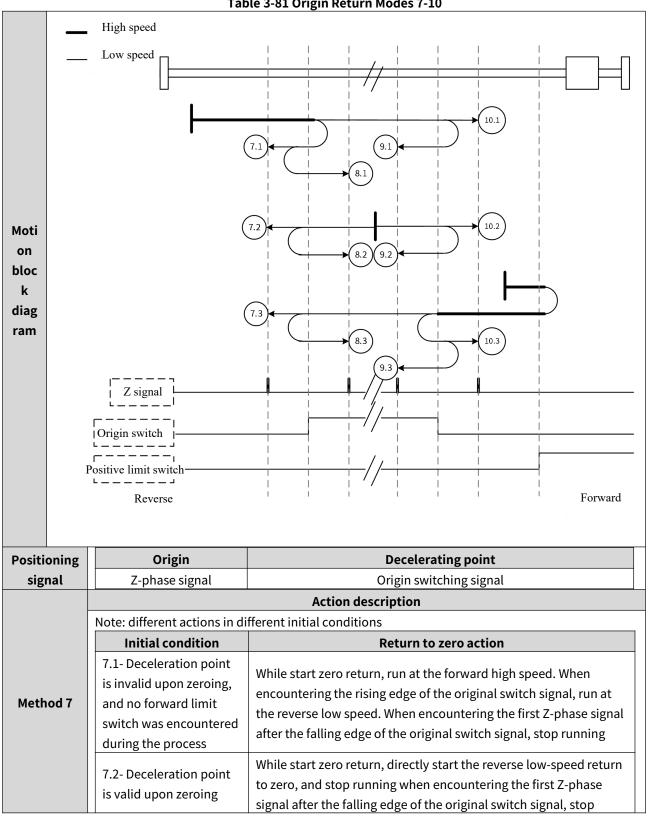

the forward low speed. When encountering the first Z-phase signal

to zero

		after the rising edge of the original switch signal, stop running

IV) Methods 5-6:

Table 3-80 Origin Return Modes 5-6

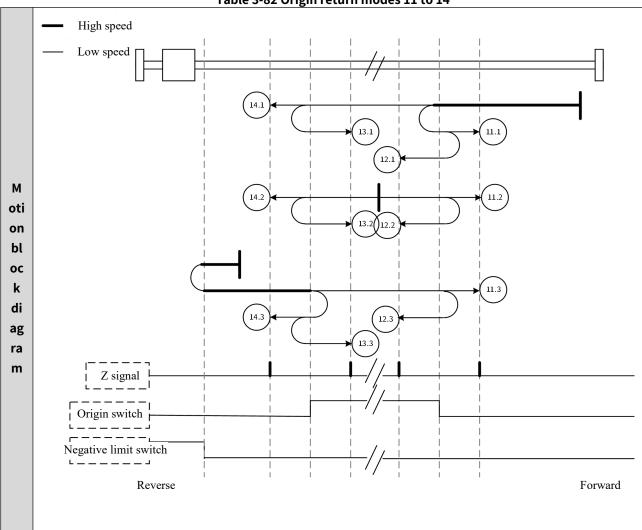


Positionin	Origin	Decelerating point	
g signal	Z-phase signal	Origin switching signal	
		Action description	
	Note: different actions in different initial conditions		
	Initial condition	Return to zero action	
	5.1 - Zeroing	While start zeroing, directly start the forward low-speed zeroing	
Method 5	deceleration point is	and stop when the first Z-phase signal occurs after falling edge of	
Method 5	valid	the origin switch signal	
	5.2 - Zeroing deceleration point is invalid	While start zeroing, run at the reverse high speed. When	
		encountering rising edge of the origin switch signal, run at the	
		forward low speed. Stop when the first Z-phase signal occurs after	
		falling edge of the origin switch signal	
		Action description	
	Note: different actions in different initial conditions		
	Initial condition	Return to zero action	
Method 6	6.1. Zoroing	While start zeroing, run at the forward high speed. When	
	6.1- Zeroing	encountering falling edge of the origin switch signal, run at the	
	deceleration point is	reverse low speed. Stop when the first Z-phase signal occurs after	
	valid	rising edge of the origin switch signal	

6.2- Zeroing	While start zeroing, directly start the reverse low-speed zeroing
deceleration point is	and stop when the first Z-phase signal occurs after rising edge of
invalid	the origin switch signal

V) Methods 7-10:

Table 3-81 Origin Return Modes 7-10



		running	
	7.3- Deceleration point is invalid upon zeroing, and forward limit switch was encountered during the process Note: different actions in di	While start zeroing, run at the forward high speed. If encountering forward limit signal prior to the origin switch signal, run at the reverse high speed. Run at reverse low speed when encountering the rising edge of the original switch signal. When encountering the first Z-phase signal after falling edge of the origin switch signal, stop running. Action description Greent initial conditions Return to zero action	
	8.1- The deceleration	While start zeroing, run at the forward high speed. When	
	point is invalid when	encountering rising edge of the origin switch signal, run at the	
	returning to zero, and	reverse low speed. Run at forward low speed when encountering	
	no forward limit switch	falling edge of the original switch signal.When encountering the	
	was encountered in the	first Z-phase signal after rising edge of the origin switch signal,stop	
	process	running.	
Method 8	8.2- The deceleration	While start zeroing, run at the reverse low speed. When	
Method 6	point is valid when	encountering falling edge of the origin switch signal, run at the	
	returning to zero	forward low speed. Stop when encountering the first Z-phase	
	returning to zero	signal after rising edge of the origin switch signal	
	8.3- The deceleration	While start zeroing, run at the forward high speed. If encountering	
	point is invalid when	forward limit signal prior to the origin switch signal, run at the	
	returning to zero, and	reverse high speed. Run at reverse low speed when encountering	
	forward limit switch was	the rising edge of the original switch signal. Run at forward low	
	encountered in the	speed when encountering the falling edge of the original switch	
	process	signal. When encountering the first Z-phase signal after rising edge	
		of the origin switch signal, stop running. Action description	
	Note: different actions in different initial conditions		
	Initial condition	Return to zero action	
	9.1- The deceleration	While start zeroing, run at the forward high speed. When	
	point is invalid when	encountering rising edge of the origin switch signal, run at the	
	returning to zero, and	forward low speed. When encountering falling edge of the original	
	no forward limit switch	switch signal, run at the reverse low speed. Stop when	
	was encountered in the	encountering the first Z-phase signal after rising edge of the origin	
14-46-40	process	switch signal	
Method 9	0.2 Deceleration naint	While start zeroing, run at the forward low speed. When	
	9.2- Deceleration point is valid when returning	encountering falling edge of the origin switch signal, run at the	
		reverse low speed. Stop when encountering the first Z-phase	
	to zero	signal after rising edge of the origin switch signal	
	9.3- The deceleration	While start zeroing, run at the forward high speed. If encountering	
	point is invalid when	forward limit signal prior to the origin switch signal, run at the	
	returning to zero, and	reverse high speed. Run at forward low speed when encountering	
	forward limit switch was	the rising edge of the original switch signal. Run at reverse low	
	encountered in the	speed when encountering the falling edge of the original switch	

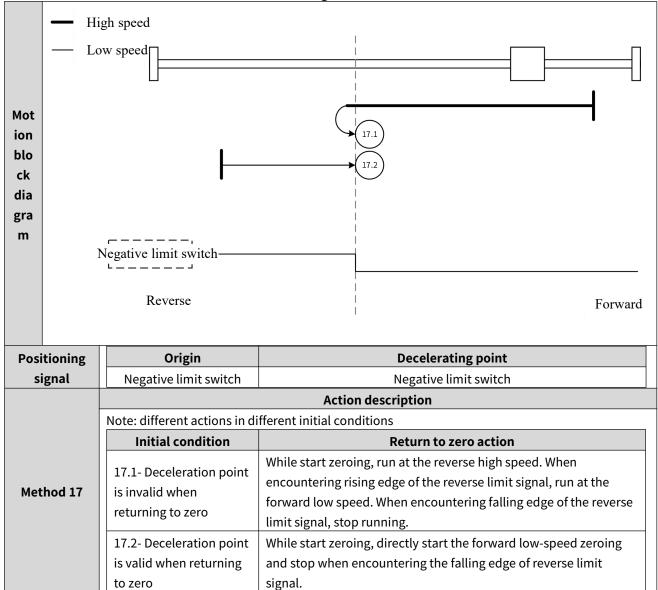
	process	signal. When encountering the first Z-phase signal after rising edge	
	of the origin switch signal,stop running. Action description		
	Note: different actions in different initial conditions		
	Initial condition	Return to zero action	
	10.1- The deceleration	While start zeroing, run at the forward high speed. When	
	point is invalid when	encountering rising edge of the origin switch signal, run at the	
	returning to zero, and	forward low speed. When encountering falling edge of the original	
	no forward limit switch	switch signal, run at the forward low speed. Stop when	
	was encountered in the	encountering the first Z-phase signal after falling edge of the origin	
	process	switch signal	
Method 10	10.2- Deceleration point is valid when returning to zero	While start zeroing, run at the forward low speed. When	
Method 10		encountering falling edge of the origin switch signal, run at the	
		forward low speed. Stop when encountering the first Z-phase	
		signal after falling edge of the origin switch signal	
	10.3- The deceleration	While start zeroing, run at the forward high speed. If encountering	
	point is invalid when	forward limit signal prior to the origin switch signal, run at the	
	returning to zero, and	reverse high speed. Run at forward low speed when encountering	
	forward limit switch was encountered in the	the rising edge of the original switch signal. Run at forward low	
		speed when encountering the falling edge of the original switch	
	process	signal. When encountering the first Z-phase signal after falling	
	process	edge of the origin switch signal,stop running.	

VI) Method 11 to 14:

Table 3-82 Origin return modes 11 to 14

Positioning	Origin	Decelerating point
signal	Z-phase signal	Origin switching signal
•		Origin switching signal Action description Ferent initial conditions Return to zero action While start zeroing, run at the reverse high speed. When encountering rising edge of the origin switch signal, run at the forward low speed. Stop when the first Z-phase signal occurs after falling edge of the origin switch signal While start zeroing, directly start the forward low-speed zeroing and stop when the first Z-phase signal occurs after falling edge of
	11.3- Deceleration point is invalid upon zeroing,	the origin switch signal While start zeroing, run at the reverse high speed. If encountering reverse limit signal prior to the origin switch signal, run at the
	and reverse limit switch	forward high speed. Run at forward low speed when

	was encountered during	encountering the rising edge of the original switch signal. When	
	the process	encountering the first Z-phase signal after falling edge of the	
	the process	origin switch signal, stop running.	
		Action description	
	Note: different actions in diffe	·	
	Initial condition	Return to zero action	
	micial Condition	While start zeroing, run at the reverse high speed. When	
	12.1- Deceleration point is	encountering rising edge of the origin switch signal, run at the	
	invalid upon zeroing, and	forward low speed. When encountering falling edge of the	
	no reverse limit switch was	original switch signal, run at the reverse low speed. Stop when	
	encountered during the	encountering the first Z-phase signal after rising edge of the	
	process	origin switch signal	
		While start zeroing, run at the forward low speed. When	
Method 12	12.2- Deceleration point is	encountering falling edge of the origin switch signal, run at the	
	valid upon zeroing	reverse low speed. Stop when encountering the first Z-phase	
		signal after rising edge of the origin switch signal	
		While start zeroing, run at the reverse high speed. If	
	12.2 Deceleration actable	encountering reverse limit signal prior to the origin switch	
	12.3- Deceleration point is	signal, run at the forward high speed. Run at forward low speed	
	invalid upon zeroing, and reverse limit switch was	when encountering the rising edge of the original switch signal.	
		Run at the reverse low speed when encountering the falling	
	encountered during the	edge of the original switch signal. When encountering the first	
	process	Z-phase signal after rising edge of the origin switch signal,stop	
		running.	
	Action description		
	Note: different actions in diffe	erent initial conditions	
	Initial condition	Return to zero action	
	13.1- Deceleration point is	While start zeroing, run at the reverse high speed. When	
	invalid upon zeroing, and	encountering rising edge of the origin switch signal, run at the	
	no reverse limit switch was	reverse low speed. When encountering falling edge of the	
	encountered during the	original switch signal, run at the forward low speed. Stop when	
	process	encountering the first Z-phase signal after rising edge of the	
		origin switch signal	
M - 41 - 1 12	13.2- Zero return	While start zeroing, run at the reverse low speed. When	
Method 13	deceleration point is valid upon zeroing	encountering falling edge of the origin switch signal, run at the	
		forward low speed. Stop when encountering the first Z-phase	
		signal after rising edge of the origin switch signal	
		While start zeroing, run at the reverse high speed. If	
	12.3- Deceleration point is	encountering reverse limit signal prior to the origin switch	
	invalid upon zeroing, and	signal, run at the forward high speed. Run at reverse low speed when encountering the rising edge of the original switch signal.	
	reverse limit switch was	Run at the forward low speed when encountering the falling	
	encountered during the	edge of the original switch signal. When encountering the first	
	process	Z-phase signal after rising edge of the origin switch signal, stop	
		running.	
		1400006	


	Action description		
	Note: different actions in different initial conditions		
	Initial condition	Return to zero action	
	14.1- Deceleration point is invalid upon zeroing, and no reverse limit switch was encountered during the process	While start zeroing, run at the reverse high speed. When encountering rising edge of the origin switch signal, run at the reverse low speed. When encountering falling edge of the original switch signal, run at the reverse low speed. Stop when encountering the first Z-phase signal after falling edge of the origin switch signal	
Method 14	14.2- Deceleration point is valid when returning to zero	While start zeroing, run at the reverse low speed. When encountering falling edge of the origin switch signal, run at the reverse low speed. Stop when encountering the first Z-phase signal after falling edge of the origin switch signal	
	14.3- The deceleration point is invalid when returning to zero, and forward limit switch was encountered in the process	While start zeroing, run at the reverse high speed. If encountering reverse limit signal prior to the origin switch signal, run at the forward high speed. Run at reverse low speed when encountering the rising edge of the original switch signal. Run at reverse low speed when encountering the falling edge of the original switch signal. When encountering the first Z-phase signal after falling edge of the origin switch signal, stop running.	

VII) Method 15-16: Reserved

Note that methods 17-30 are similar to methods 1-14, except that they no longer rely on the Z-phase signal as the origin, detailed methods as follows.

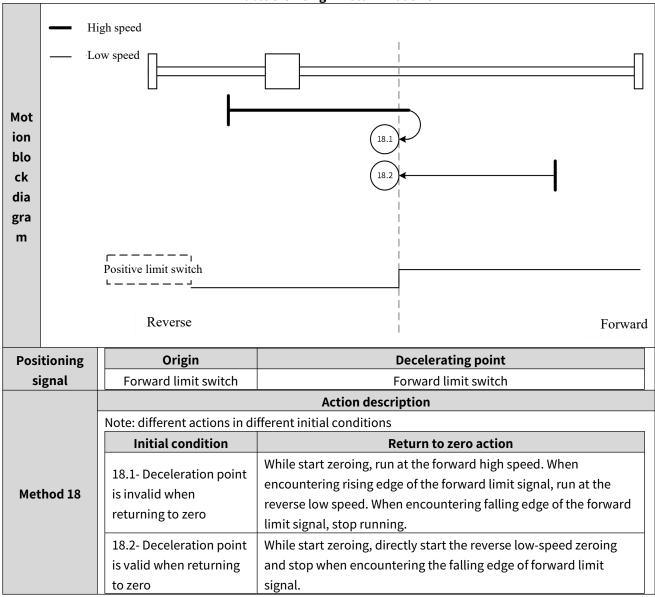

VIII) Method 17:

Table 3-83 Origin Return Mode 17

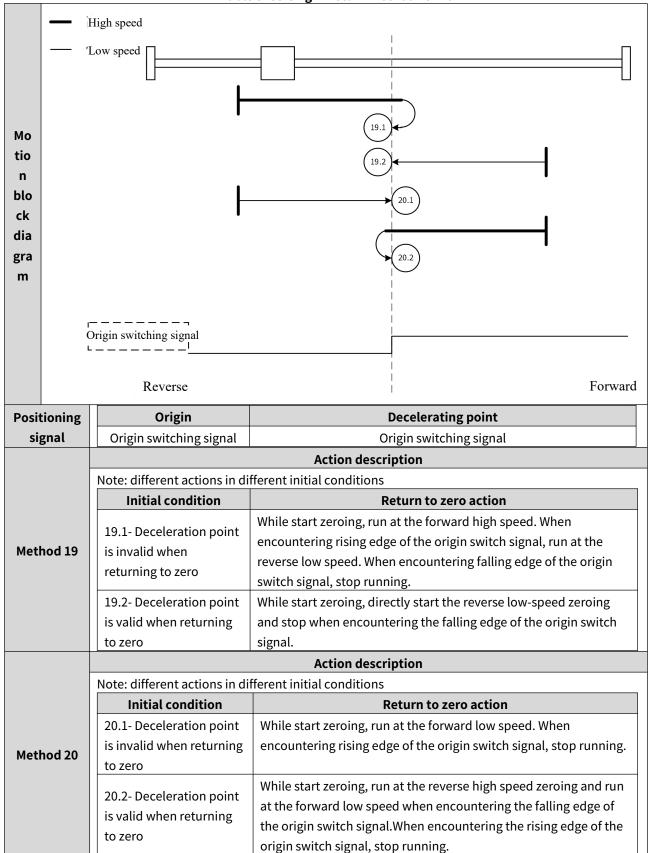

VIII) Method 18:

Table 3-84 Origin Return Mode 18

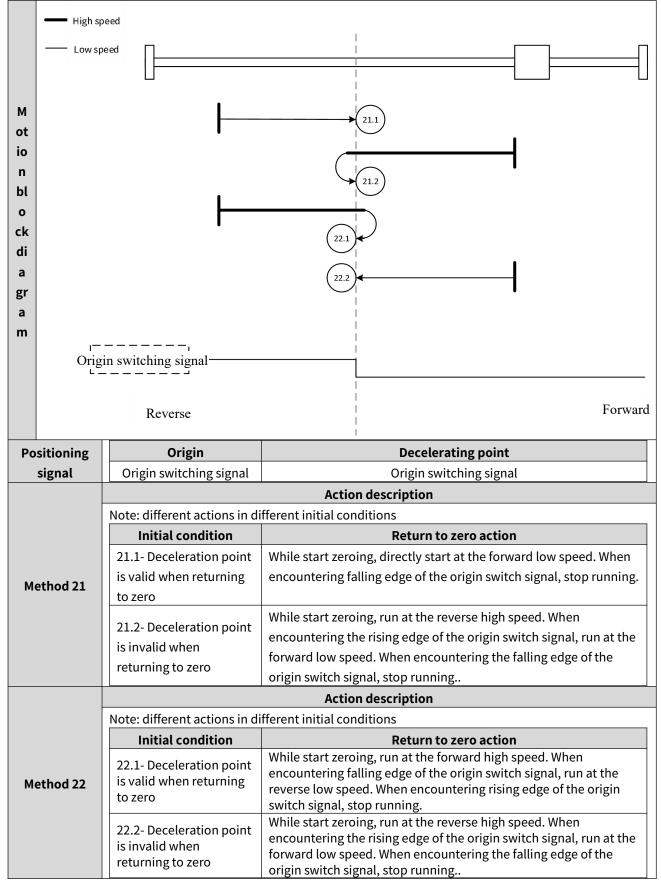

X)Method 19~20:

Table 3-85 Origin Return Method 19~20

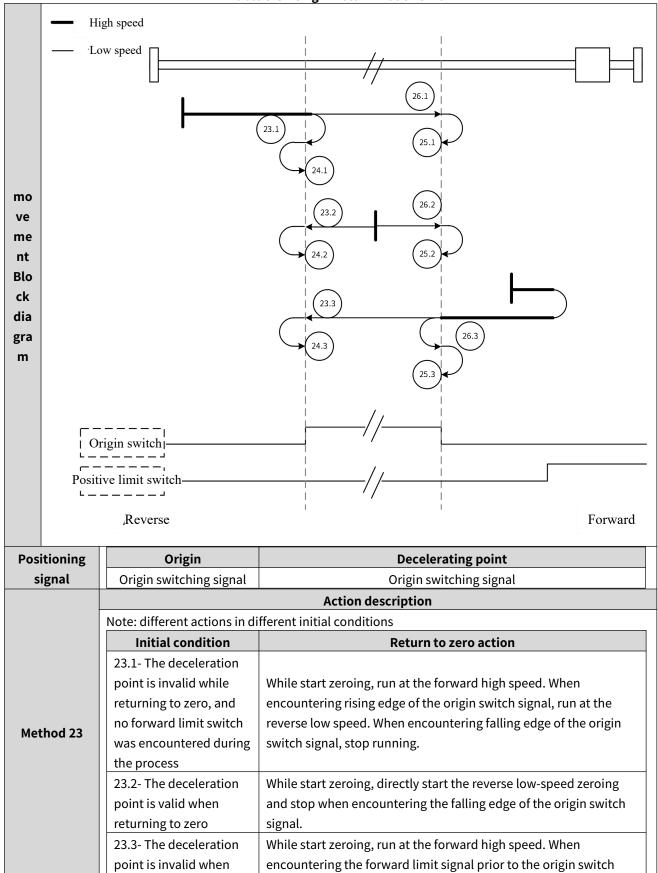
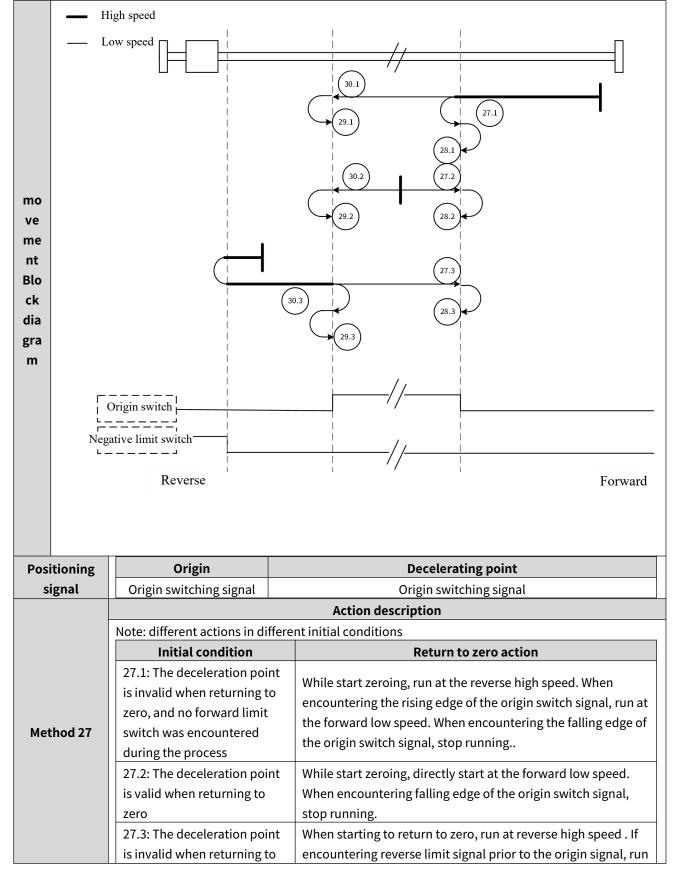

X)Method 21-22:

Table 3-86 Origin Return Method 21~22

XII) Method 23-26:

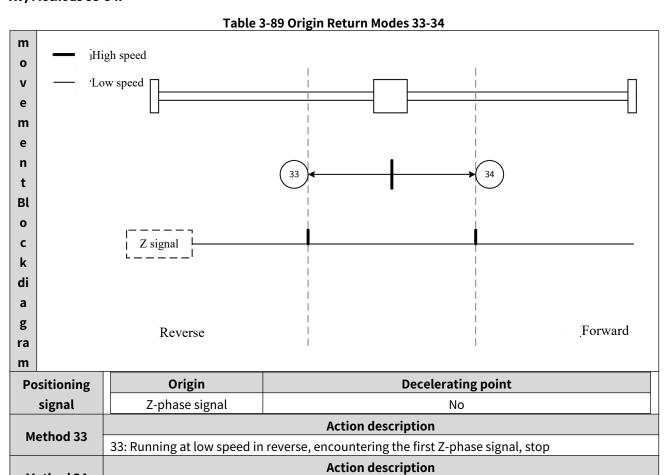
Table 3-87 Origin Return Mode 23-26



	(
	returning to zero, and forward limit switch is	signal, run at the reverse high speed. When encountering the rising		
		edge of the origin switch signal, run at the reverse low speed.		
	encountered during the	When encountering the falling edge of the origin switch signal,		
	process	stop running		
		Action description		
	Note: different actions in different initial conditions			
	Initial condition	Return to zero action		
		While start zeroing, run at the forward high speed. When		
	is invalid when returning t	encountering rising edge of the origin switch signal, run at the		
	zero, and no forward limit	reverse low speed. When encountering falling edge of the		
	switch was encountered ir	original switch signal, run at the forward low speed. When		
		encountering the rising edge of the origin switch signal, stop		
	the process	running.		
Mathad 24		While start zeroing, run at the reverse low speed. When		
Method 24	24.2- Deceleration point is	encountering falling edge of the origin switch signal, run at		
	valid when returning to ze	ro the forward low speed. Stop when encountering the rising		
		edge of the origin switch signal		
		While start zeroing, run at the forward high speed. If		
	24.2. The decoloration was	encountering forward limit signal prior to the origin switch		
	24.3- The deceleration poi	signal, run at the reverse high speed. Run at reverse low		
	is invalid when returning t	speed when encountering the rising edge of the original		
	zero, and forward limit	switch signal. Run at the forward low speed when		
	switch was encountered in the process	encountering the falling edge of the original switch signal.		
		When encountering the rising edge of the origin switch		
		signal,stop running.		
	Action description			
	Note: different actions in different initial conditions			
	Note: different actions in di	·		
	Note: different actions in dif	·		
	Initial condition	fferent initial conditions Return to zero action While start zeroing, run at the forward high speed. When		
	Initial condition 25.1- The deceleration poi	Return to zero action While start zeroing, run at the forward high speed. When encountering rising edge of the origin switch signal run at the		
	Initial condition 25.1- The deceleration poil is invalid when returning to	Return to zero action While start zeroing, run at the forward high speed. When encountering rising edge of the origin switch signal run at the		
	25.1- The deceleration poi is invalid when returning t zero, and no forward limit	Return to zero action While start zeroing, run at the forward high speed. When encountering rising edge of the origin switch signal, run at the forward low speed. When encountering falling edge of the original switch signal, run at the reverse low speed. When		
	25.1- The deceleration poi is invalid when returning t zero, and no forward limit switch was encountered in	Return to zero action While start zeroing, run at the forward high speed. When encountering rising edge of the origin switch signal, run at the forward low speed. When encountering falling edge of the original switch signal, run at the reverse low speed. When		
Mothod 25	25.1- The deceleration poi is invalid when returning t zero, and no forward limit	Return to zero action While start zeroing, run at the forward high speed. When encountering rising edge of the origin switch signal, run at the forward low speed. When encountering falling edge of the original switch signal, run at the reverse low speed. When		
Method 25	25.1- The deceleration poi is invalid when returning t zero, and no forward limit switch was encountered in	Return to zero action While start zeroing, run at the forward high speed. When encountering rising edge of the origin switch signal, run at the forward low speed. When encountering falling edge of the original switch signal, run at the reverse low speed. When encountering the rising edge of the origin switch signal, stop		
Method 25	25.1- The deceleration poi is invalid when returning t zero, and no forward limit switch was encountered in	Return to zero action While start zeroing, run at the forward high speed. When encountering rising edge of the origin switch signal, run at the forward low speed. When encountering falling edge of the original switch signal, run at the reverse low speed. When encountering the rising edge of the origin switch signal, stop running. While start zeroing, run at the forward low speed. When		
Method 25	Initial condition 25.1- The deceleration poil is invalid when returning to zero, and no forward limit switch was encountered in the process	Return to zero action While start zeroing, run at the forward high speed. When encountering rising edge of the origin switch signal, run at the forward low speed. When encountering falling edge of the original switch signal, run at the reverse low speed. When encountering the rising edge of the origin switch signal, stop running. While start zeroing, run at the forward low speed. When encountering falling edge of the origin switch signal, run at		
Method 25	Initial condition 25.1- The deceleration poil is invalid when returning to zero, and no forward limit switch was encountered in the process 25.2- Deceleration point is	Return to zero action While start zeroing, run at the forward high speed. When encountering rising edge of the origin switch signal, run at the forward low speed. When encountering falling edge of the original switch signal, run at the reverse low speed. When encountering the rising edge of the origin switch signal, stop running. While start zeroing, run at the forward low speed. When encountering falling edge of the origin switch signal, run at		
Method 25	Initial condition 25.1- The deceleration poil is invalid when returning to zero, and no forward limit switch was encountered in the process 25.2- Deceleration point is valid when returning to zero.	Return to zero action While start zeroing, run at the forward high speed. When encountering rising edge of the origin switch signal, run at the forward low speed. When encountering falling edge of the original switch signal, run at the reverse low speed. When encountering the rising edge of the origin switch signal, stop running. While start zeroing, run at the forward low speed. When encountering falling edge of the origin switch signal, run at the reverse low speed. Stop when encountering the rising edge of the origin switch signal. While start zeroing, run at the forward high speed. If		
Method 25	Initial condition 25.1- The deceleration poil is invalid when returning to zero, and no forward limit switch was encountered in the process 25.2- Deceleration point is valid when returning to zero.	Return to zero action While start zeroing, run at the forward high speed. When encountering rising edge of the origin switch signal, run at the forward low speed. When encountering falling edge of the original switch signal, run at the reverse low speed. When encountering the rising edge of the origin switch signal, stop running. While start zeroing, run at the forward low speed. When encountering falling edge of the origin switch signal, run at the reverse low speed. Stop when encountering the rising edge of the origin switch signal While start zeroing, run at the forward high speed. If encountering forward limit signal prior to the origin switch		
Method 25	Initial condition 25.1- The deceleration poil is invalid when returning to zero, and no forward limit switch was encountered in the process 25.2- Deceleration point is valid when returning to zero. 25.3- The deceleration poil is invalid when returning to zero.	Return to zero action While start zeroing, run at the forward high speed. When encountering rising edge of the origin switch signal, run at the forward low speed. When encountering falling edge of the original switch signal, run at the reverse low speed. When encountering the rising edge of the origin switch signal, stop running. While start zeroing, run at the forward low speed. When encountering falling edge of the origin switch signal, run at the reverse low speed. Stop when encountering the rising edge of the origin switch signal While start zeroing, run at the forward high speed. If encountering forward limit signal prior to the origin switch		
Method 25	Initial condition 25.1- The deceleration poil is invalid when returning to zero, and no forward limit switch was encountered in the process 25.2- Deceleration point is valid when returning to zero, and forward limit	Return to zero action While start zeroing, run at the forward high speed. When encountering rising edge of the origin switch signal, run at the original switch signal, run at the reverse low speed. When encountering falling edge of the original switch signal, run at the reverse low speed. When encountering the rising edge of the origin switch signal, stop running. While start zeroing, run at the forward low speed. When encountering falling edge of the origin switch signal, run at the reverse low speed. Stop when encountering the rising edge of the origin switch signal While start zeroing, run at the forward high speed. If encountering forward limit signal prior to the origin switch signal, run at the reverse high speed. Run at forward low speed when encountering the rising edge of the original		
Method 25	Initial condition 25.1- The deceleration poil is invalid when returning to zero, and no forward limit switch was encountered in the process 25.2- Deceleration point is valid when returning to zero. 25.3- The deceleration poil is invalid when returning to zero.	Return to zero action While start zeroing, run at the forward high speed. When encountering rising edge of the origin switch signal, run at the original switch signal, run at the reverse low speed. When encountering falling edge of the original switch signal, run at the reverse low speed. When encountering the rising edge of the origin switch signal, stop running. While start zeroing, run at the forward low speed. When encountering falling edge of the origin switch signal, run at the reverse low speed. Stop when encountering the rising edge of the origin switch signal While start zeroing, run at the forward high speed. If encountering forward limit signal prior to the origin switch signal, run at the reverse high speed. Run at forward low speed when encountering the rising edge of the original		

		When encountering the rising edge of the origin switch signal,stop running.	
		Action description	
	Note: different actions in different initial conditions		
	Initial condition	Return to zero action	
	26.1- The deceleration point is invalid when returning to zero, and no forward limit switch was encountered in the process	While start zeroing, run at the forward high speed. When encountering rising edge of the origin switch signal, run at the forward low speed. When encountering falling edge of the original switch signal, run at the forward low speed. When encountering the falling edge of the origin switch signal, stop running.	
Method 26	26.2- Deceleration point is valid when returning to zero	While start zeroing, run at the forward low speed. When encountering falling edge of the origin switch signal, run at the forward speed. Stop when encountering the falling edge of the origin switch signal	
	26.3- The deceleration point is invalid when returning to zero, and forward limit switch was encountered in the process	While start zeroing, run at the forward high speed. If encountering forward limit signal prior to the origin switch signal, run at the reverse high speed. Run at forward low speed when encountering the rising edge of the original switch signal. Run at the forward low speed when encountering the falling edge of the original switch signal. When encountering the falling edge of the origin switch signal, stop running.	

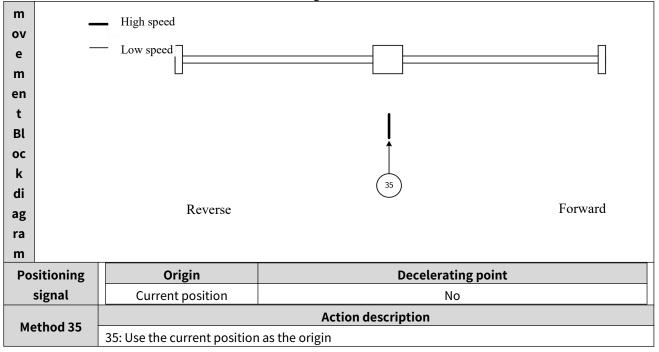
XIII) Method 27-30:


	zero, and a reverse limit	at the forward high speed. When encountering the rising edge	
	switch is encountered during	of the origin switch signal, run at forward low speed. When	
	the process	encountering the falling edge of the origin switch signal, stop running	
		Action description	
	Note: different actions in differe		
	Initial condition	Return to zero action	
	28.1: The deceleration point is invalid when returning to zero, and no reverse limit switch was encountered during the process	When starting to return to zero, run at the reverse high speed. When encountering the rising edge of the origin switch signal, run at the forward low speed. When encountering the falling edge of the origin switch signal, run at the reverse low speed. Stop running when encountering the rising edge of the origin switch signal	
Method 28	28.2: The deceleration point is valid when returning to zero	While start zeroing, run at the forward low speed. When encountering falling edge of the origin switch signal, run at the reverse low speed. Stop when encountering the rising edge of the origin switch signal	
	28.3: The deceleration point is invalid when returning to zero, and reverse limit switch is encountered during the process	When starting to return to zero, run at the reverse high speed. If encountering reverse limit signal prior to the origin switch, runs at the forward high speed. When encountering the rising edge of the origin switch signal, it runs at the forward low speed. When encountering the falling edge of the origin switch signal, it runs at the reverse low speed. When encountering the rising edge of the origin switch signal, stop running	
	Action description		
	Note: different actions in differe	nt initial conditions	
	Initial condition	Return to zero action	
	29.1: The deceleration point is invalid when returning to zero, and no reverse limit switch was encountered during the process	When starting to return to zero, run at the reverse high speed in reverse. When encountering the rising edge of the origin switch signal, it runs at the reverse low speed in reverse. When encountering the falling edge of the origin switch signal, it runs at the forward low speed. When encountering the rising edge of the origin switch signal, it stops running	
Method 29	29.2: The deceleration point is valid when returning to zero	While start zeroing, run at the reverse low speed. When encountering falling edge of the origin switch signal, run at the forward low speed. Stop when encountering the rising edge of the origin switch signal	
	29.3: The deceleration point is invalid when returning to zero, and a reverse limit switch is encountered during the process	When starting to return to zero, it runs at the reverse high speed. If encountering reverse limit signal prior to the origin switch signal, run at the forward high speed. When encountering the rising edge of the origin switch signal, it runs at the reverse low speed. When encountering the falling edge of the origin switch signal, run at the forward low speed. When encountering the rising edge of the origin switch signal,	

		stop running	
	Action description		
	Note: different actions in different initial conditions		
	Initial condition	Return to zero action	
Method 30	30.1: The deceleration point is invalid when returning to zero, and no reverse limit switch was encountered during the process 30.2: The deceleration point is valid when returning to zero	While starting to return to zero, run at the reverse high speed. When encountering the rising edge of the origin switch signal, run at the reverse low speed. When encountering the falling edge of the origin switch signal, continue to run at the reverse low speed. Stop running, when encountering the falling edge of the origin switch signal While starting to return to zero, run at the reverse low speed. When encountering the falling edge of the origin switch signal, continue to run at the reverse low speed. Stop running, when encountering the falling edge of the origin switch signal	
	30.3: The deceleration point is invalid when returning to zero, and a reverse limit switch is encountered during the process	While starting to return to zero, run at the reverse high speed. If encountering the reverse limit signal prior to the origin switch, run at the forward high speed. When encountering the rising edge of the origin switch signal, run at the reverse low speed. When encountering the falling edge of the origin switch signal, continue running at reverse low speed. Stop running, when encountering the falling edge of the origin switch signal	

XIV) Method 31-32: Reserved

XV) Methods 33-34:


Method 34

34: Running forward at low speed, encountering the first Z-phase signal, stop

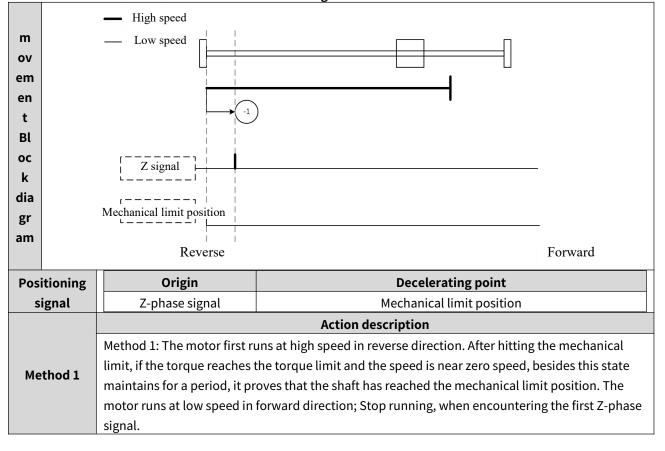

XVI) Method 35:

Table 3-90 Origin Return Mode 35

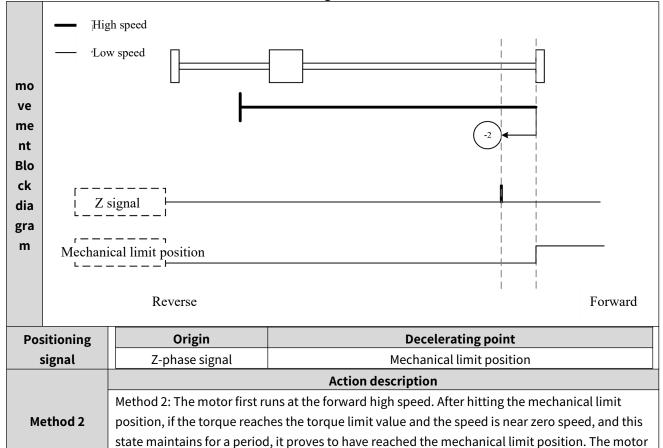

XVII) Method 1:

Table 3-91 Origin Return Mode-1

XVIII) Method 2

Table 3-92 Origin Return Mode -2

runs at the reverse low speed, stop running when encountering the first Z-phase signal.

3.4.4 Application Functions

(1) Probe function

Function Overview

SV3 servo drive supports servo motor position recording function, also known as probe function. With this function, motor position (command unit) can be latched when the external signal is valid or during riseing/falling edge of the servo motor Z-phase signal.

Table 3-93 Probe Lock Signal Selection

Serial No.	Latch enable signal			
Probe 1	HDI1			
	Z signal			
Probe 2	HDI2			
	Z signal			

🔼 Note:

The latch time can be rising or falling edge of the external signal, so SV3 can simultaneously latch 4 positions.

SV3 servo drive supports 2 types of latching: single latching position and continuous latching.

If using HDI 1 and HDI 2 as trigger signals for probe functions, please disable the DI and DO forcing function.

If using HDI 1 and HDI 2 as trigger signals for probe functions, please assign HDI 1 function as 33 probe 1 and HDI 2 function as 34 probe 2. The relevant objects are as follows:

Table 3-94 HDI 1~HDI 2 objects

Parameter	Name	Set
P03.14	HDI1 terminal function selection	Please set 33-probe 1
P03.16	HDI2 terminal function selection	Please set 34-probe 2

Related object (instruction * setting class)

Table 3-95 Probe Function Command Setting Objects

Index	Subinde x	Name	Unit	Range	Data type	Accessibilit y	PDO
0x2003	0F	HDI1 Function Settings	-	0~34	UINT16	RW	-
0x2003	11	HDI2 Function Settings	-	0~34	UINT16	RW	-
0x60B8	00	Probe function	-	0~65535	UINT16	RW	RxPDO

Table 3-96 0x60B8- Probe Function

0x60B8- Probe Function			
Index - Subindex	0x60B8-00		
Data type	UINT16		
Accessibility	Readable/writable		
Unit	-		
DeError value	0		
Min.	0		
Max.	65535		
Setting and effective mode	Operation settings/downtime effective		
Related mode	ALL		

	Bit	Name	Description
	0	Probe 1 Function	0-Disable; 1- Enable
	1	Probe 1 mode	0-Single recording; 1- Continuous recording
	2	Probe 1 Trigger signal	0-HDI1; 1-Z signal
	3	NA	Reserved
	4	Probe 1 rising edge action*	0- Not latch; 1- Latch
	5	Probe 1 falling edge action*	0- Not latch; 1- Latch
	6	NA	Reserved
Note	7	NA	Reserved
	8	Probe 2 Function	0-Disable; 1- Enable
	9	Probe 2 Mode	0-Single recording; 1- Continuous recording
	10	Probe 2 trigger signal	0-HDI2; 1-Z signal
	11	NA	Reserved
	12	Probe 2 rising edge action*	0- Not latch; 1- Latch
	13	Probe 2 falling edge action*	0- Not latch; 1- Latch
	14	NA	Reserved
	15	NA	Reserved

A Note:

Please set trigger mode, trigger signal, rising edge action, and falling edge action before enabling probe function.

Related objects (status * monitor class)

Table 3-97 Probe function status monitoring objects

Table 3-97 Probe function status monitoring objects							
Index	Subindex	Name	Unit	Range	Data type	Accessibilit y	PDO
0x60B9	00	Probe status	-	-	UINT16	RO	TxPDO
0x60BA	00	Probe 1 rising edge latch position	Instructio n unit	-	INT32	RO	TxPDO
0x60BB	00	Probe 1 falling edge latch position	Instructio n unit	-	INT32	RO	TxPDO
0x60BC	00	Probe 2 rising edge latch position	Instructio n unit	-	INT32	RO	TxPDO
0x60BD	00	Probe 2 falling edge latch position	Instructio n unit	-	INT32	RO	TxPDO

Table 3-98 0x60B9 Probe status word

0x60B9- Probe status word			
Index - Subindex	0x00		
Data type	UINT16		
Accessibility	Readable		
Unit	-		
DeError value	0		
Min.	0		

Max.	65535				
Setting and effective					
mode			-		
Related mode			PST		
	Bit	Name	Description		
	0	Probe 1 Function	0 - Not enabled; 1 - Enable		
	1	Probe 1 rising edge latch	0- Rising edge not latched, 1- Rising		
	1	status	edge latch\ed		
		Probe 1 falling edge latch	0-Falling edge not latched, 1- Falling		
	2	status	edge latched		
Note	3~7	NA	Reserved		
	8	Probe 2 Function	0 - Not enabled; 1 - Enable		
		Probe 2 rising edge latch	0- Rising edge not latched, 1- Rising		
	9	status	edge latch\ed		
	10	Probe 2 falling edge latch	0-Falling edge not latched, 1- Falling		
	10	status	edge latched		
	11~15	NA	Reserved		

Probe usage

Single rising edge latch

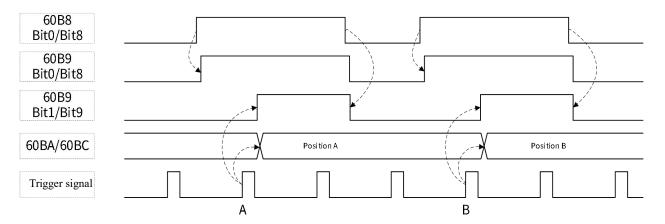
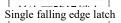



Figure 3-73 Schematic diagram of single rising edge latch

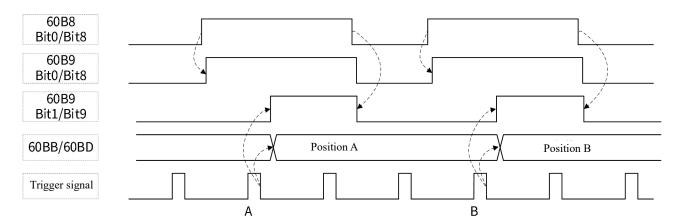


Figure 3-74 Schematic diagram of single falling edge latch

Continuous rising edge latch

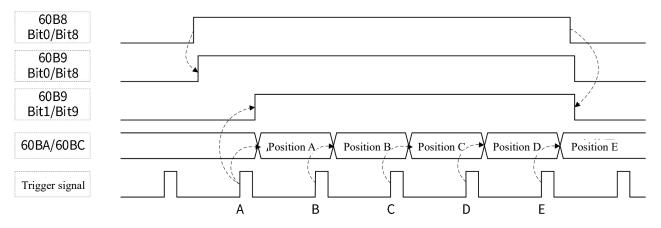


Figure 3-75 Continuous rising edge latch

Continuous falling edge latch

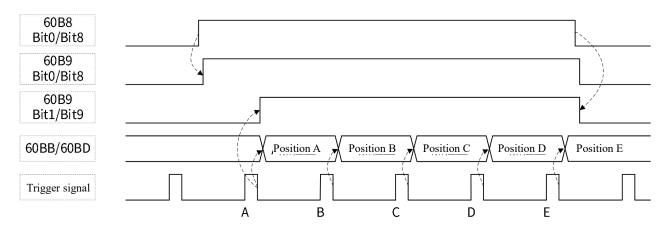


Figure 3-76 Continuous falling edge latch

(2) Soft limit function

Function Overview

Software limit refers to the function of limiting the position of servo motor by the built-in of drive so as to protect the equipment.

The software limit function can be available in any mode, and different overtravel stop modes can be set according to the actual connection method of devices. If it is in position mode and the target position is out of the limit interval, the servo motor moves toward the destination of the endpoint of limit interval. If in other modes, it stops in the specified way when the position feedback is out of the limit interval.

The software limit function is to restrict the value of position feedback 6064h (instruction unit) in a certain range, pay attention to the unit.

Please ensure that the lower limit of limit interval is less than the upper limit.

If both DI overtravel switch and the software limit are enabled simultaneously, the overtravel state is determined by external DI overtravel switch.

Related object (instruction * setting class)

Table 3-99 P05.43 Soft Limit Setting

Table 3-99 P05.43 Soft Limit Setting				
P05.43- Soft limit setting				
Index - Subindex	0x2005-2C			
Data type		UINT16		
Accessibility		Readable/writable		
Unit		-		
DeError value		0		
Min.		0		
Max.	2			
Setting and effective	Out and the second are a filled as a filled as			
mode	Operation settings/downtime effective			
Related mode	ALL			
	Set the enable mode for soft	vare limit function		
	Settings	Software limit function		
Note	0	Disable software limit function		
	1	Enable software limit function		
	2	Enable software limit function after the origin return,		

Table 3-100 0x607D - Software Absolute Position Limit

0x607D - Software absolute position limit						
Index - Subindex	1h 2h					
Data type	UIN	UINT32				
Accessibility	RW	RW				
Unit	-	-				
DeError value	-2 ³¹	2 ³¹ -1				
Min.	-2 ³¹	-2 ³¹				
Max.	2 ³¹ -1	2 ³¹ -1				
Setting and						
effective mode	Operation settings,	Operation settings/downtime effective				

Related mode	ALL	
	607D-01h: Min. position limit	
Note	607D-02h: Max. position limit	

Chapter 4 Gain Adjustment

4.1 Purpose

In order to enable the servo system to quickly and accurately track instructions from the upper computer or internal settings, fully utilize mechanical performance, improve production cycle and efficiency, it is necessary to adjust the gain of the servo control loop reasonably.

Taking common screw loads as an example, such as errors! Reference source not found. As shown, by reasonably increasing the gain related to the speed loop and position loop, ensuring gain matching, and combining with the speed feedforward function, the trajectory tracking effect can be greatly improved.

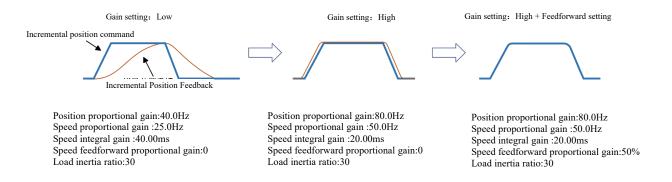


Figure 4-1 Example of gain setting

The basic gain parameters of the servo loop include the proportional coefficient Kp of the position loop, the gain coefficient Kv of the velocity loop, the integral coefficient Ki of the velocity loop, the low-pass filtering coefficient τ m of the torque, the inertia ratio Jr of the load, etc. They affect each other, and generally need to ensure that the inner loop bandwidth is higher than the outer loop bandwidth to ensure the stability of the entire system. By setting these parameters in a reasonable combination, the servo system can achieve ideal control effects in both tracking and disturbance rejection dimensions. Therefore, in order to achieve the maximum performance of the servo, the setting of the gain must take into account the balance between the set values of various parameters, which poses high capability requirements for on-site debugging personnel. The SV3 series high-performance servo supports two modes: manual parameter tuning and automatic parameter adjustment. In general application scenarios, such as 3C, lithium battery, TP and other industries, using the automatic adjustment function can meet the needs; In trajectory application scenarios that pursue ultimate performance, such as semiconductor, machine tool, laser and other industries, detailed settings of servo system parameters are required to achieve ideal results; For P2P point application scenarios that require high speed and high precision, such as high-speed glue dispensing machines, solidification machines, and sorting machines, the SV3 series servo provides gain switching function, which can achieve ultimate tracking performance through reasonable gain settings.

Before adjusting the gain, it is necessary to perform the trial operation in Chapter 3 to confirm that the motor can operate normally without interference!

4.2 Tuning Method

The general process of gain adjustment is shown in the following figure:

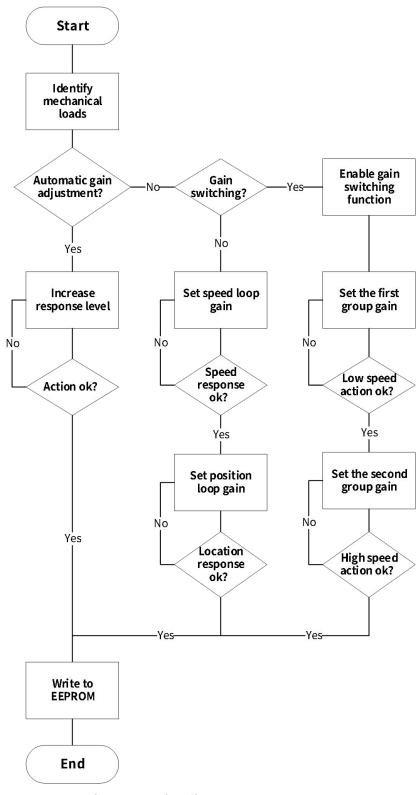
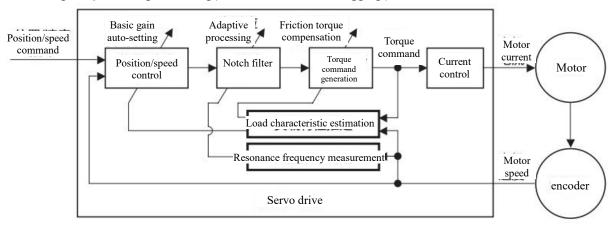


Figure 4-2 Gain Adjustment Process


The SV3 series servo provides three gain adjustment modes, namely "automatic gain adjustment", "manual gain adjustment", and "gain automatic switching". Among them,

- The "automatic gain adjustment" method only requires setting one parameter, P1A group "response level setting", to achieve the linkage setting of multiple internal gain parameters and achieve the desired response action. The higher the response level, the faster the response; For detailed introduction, please refer to section 4.2.4 on automatic gain adjustment.
- Manual gain adjustment "requires the user to turn off the automatic gain adjustment mode P1A group -" Real time Self adjustment Setting "set to" 0-off ", and sequentially set P06 gain parameters, including speed loop and position loop gain parameters, from the inner loop to the outer loop, to achieve the desired response performance;
- Manual gain adjustment "requires the user to turn off the automatic gain adjustment mode P1A group -" Real time Self adjustment Setting "set to" 0-off ", and sequentially set P06 gain parameters, including speed loop and position loop gain parameters, from the inner loop to the outer loop, to achieve the desired response performance;

To achieve good tracking performance, the prerequisite for the above three gain adjustment methods is to execute a rigorous "mechanical load recognition" program. The SV3 series servo has a built-in mechanical load recognition algorithm, which can automatically identify the mechanical load situation through forward and reverse operation. The following will introduce the contents of mechanical load recognition, manual gain adjustment, automatic gain adjustment, and gain switching in sequence.

4.2.1 Mechanical load identification

For servo systems, mechanical loads are the controlled objects and important components of the system; Mechanical load identification includes parts such as load inertia, friction force, and load mechanical resonance point. Servo can automatically identify key mechanical characteristics, set control loop parameters and compensation parameters reasonably, and achieve dynamic response performance that meets application requirements, greatly reducing the tuning pressure of on-site debugging personnel.

Figure 4-3 Mechanical Load Identification

Usually, we do not pay much attention to the absolute value of mechanical load inertia, but rather focus more on the relative size of load inertia and motor inertia, so it usually appears in the form of "inertia ratio" in the control loop.

Load inertia ratio' refers to:

Load inertia ratio is a key parameter in the servo system, and the proper setting can help to reduce the debugging

The servo drive has a built-in load inertia identification function, which can automatically identify the load inertia by this algorithm.

Inertia identification automatic recognition method:

By the buttons on the servo drive panel, make the motor move, so as to realize inertia identification without the intervention of upper computer;

A Note:

Under the following conditions, it migt be impossible to perform mechanical load identification normally. In this case, please adjust the gain manually.

Table 4-1 Factors of Mechanical Load Identification

	Factors of mechanical load identification			
Load inertia	Inertia mismatch, load inertia ratio greater than 100 times			
	Load inertia is unstable, time-varying or slowly changing			
	Extremely low mechanical rigidity, for example, in belt transmission mechanism where the belt is			
Mechanical	not tensioned.			
properties	Nonlinear factors such as excessive tooth clearance in operation or excessive backlash in			
	forward/reverse rotation, e.g., misaligned gear installation in gear transmission mechanism			
	Movement speed less than 150rpm			
Movement	When the torque for acceleration/deceleration is less than the offset load torque or less than the			
conditions	viscous friction torque			
	When the acceleration is less than 3,000rpm/s			

If the actual load inertia ratio is too large, that causes the motor to run slowly, then increase P1A group - "Response Level Setting" and re-identify the inertia.

If vibration occurs in the identification process, the inertia identification should be stopped immediately and P1A group - "Response Level Setting" should be reduced.

Before conducting offline inertia identification, first confirm the following:

There is a movable stroke of more than 1 turn in each direction between the mechanical limit switches:

Before identifying offline inertia, please ensure that limit switches are installed on the machinery to prevent overtravel and accidents in the inertia identification process!

If the actual load inertia ratio is large, estimated to be over 30 times greater than the motor inertia, inertia mismatch phenomenon may occur, that results in slow motor operation. In this case, the following 2 measures can be taken:

Preset load inertia ratio of a large initial value, and it's recommended to use the 5.00 times as the starting value, gradually increases until the identification is updated accordingly; The load inertia ratio can be set of '2006-0Bh' by object word, or of "P06.10" through the panel, or of "P06 group load inertia ratio" parameter on the background software

It can be set by appropriately increasing the driver "P1A Advanced Adjustment - Response Level Setting" on the background software, or be set by object word "201A-02h".

The general process for identifying panel operation inertia is as follows:

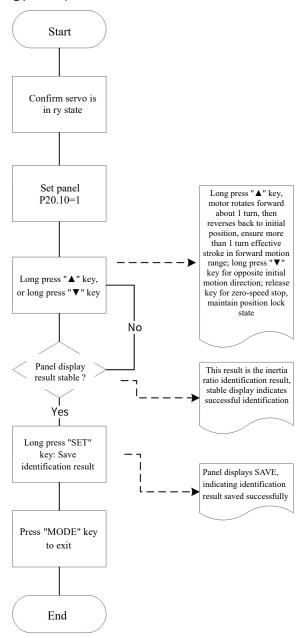
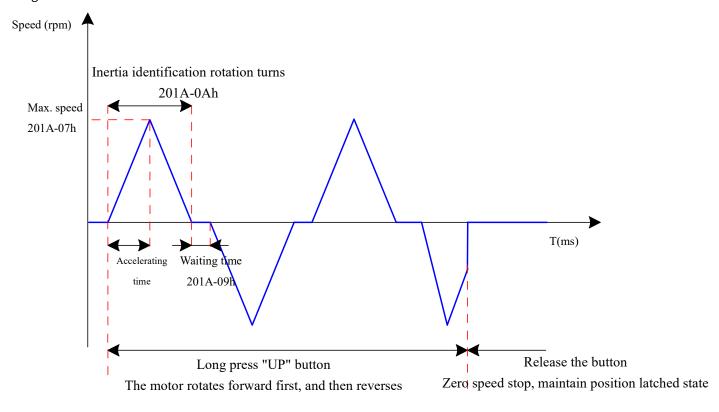



Figure 4-4 Flow Chart of Inertia Identification for Panel Operation

Inertia identification adopts the form of forward/backward triangular wave motion, and the program has already deErrored to the optimal motion parameters; Users can adjust the motion parameter settings according to actual application scenarios to realize the on-site demands. The identification program motion curve and parameter settings are as follows.

Figure 4-5 Inertia Identification Motion Curve

Table 4-2 Self-tuning Parameter Index Codes

0x201A - Advanced Adjustment					
Subindex	0x07- Max. speed estimated by inertia	0x08- Accelerating time estimated by inertia	0x09- Waiting time estimated by inertia	0x0A- Rotation turns estimated by inertia	
Data type	UINT16				
Accessibility	Readable/writable	Readable/writable	Readable/writable	Read-only	
Unit	rpm	ms	ms	turn	
DeError value	100	125	800	1.00	
Min.	100	20	50	0	
Max.	1000	800	10000	655.35	
Set enable mode	Stop setting/immediate enable	Stop setting/immediate enable	Stop setting/immediate enable		
Related mode	PST				
Note	,	eters related to offline inc optimal values. Generally,			

4.2.2 Manual gain adjustment

(1) Basic gain parameters

In scenarios with extreme performance requirements, the gain can be manually fine tuned. By making more detailed adjustments, optimize the debugging effect.

The servo system consists of 3 control loops, i.e., current loop, speed loop and position loop from the inside out. The basic control block diagram is shown in the following figure.

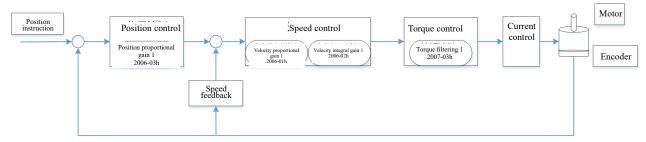


Figure 4-6 Basic Explanation Block Diagram of Manual Gain

The more inner the loop, the higher the responsiveness required. Generally, the inner loop bandwidth should be set to at least 4 times the outer loop bandwidth. For example, the current loop bandwidth should be 2,000Hz, the speed loop bandwidth should be set not higher than 500Hz, and the position loop bandwidth should be set not higher than 125Hz. In the debugging process, it should adhere to this principle as much as possible, otherwise it might lead to system instability!

The deError current loop gain of servo drive ensures responsiveness and generally doesn't need any adjustment. Only the position loop gain, velocity loop gain, and other auxiliary gains need to be adjusted. Therefore, when adjusting the gain in position control mode, if users want to improve the position response performance, to ensure system stability, first increase the speed loop gain and ensure that the inner loop bandwidth between loops is 4 times higher than the outer loop bandwidth, and then increase the position loop gain and reduce position tracking error. It must ensure the order of loop gain adjustment from the inside out.

The basic gain parameter adjustment method is as follows.

Table 4-3 Adjustment Instructions of Loop Gain Parameters Index Steps Name **Adjustment instructions** codes Parameter function: Determine Max. frequency of speed command that can follow speed-loop change. On the premise that the average of load inertia ratio (2006-0Bh) is set properly, it can be considered that: Max. follow-up frequency of speed loop = 2006-01h Velocity Speed comp proporti 2006-01h 1 Increase 2006-01h Actual spee onal gain 1 Adjustment method: In the case of no noise and vibration, increasing this parameter can speed up the positioning time and bring better velocity stability and followability.

4-7

Steps	Index codes	Name	Adjustment instructions			
			If noise is generated, reduce the parameter setting value; When mechanical vibration occurs, the vibration can be suppressed by using the notch filter or torque low-pass filter function in Section 4.3.2 Vibration Suppression".			
2	2006-02h	Velocity integral gain 1	Parameter function: Eliminate velocity loop deviation. Adjustment method: Set values may follow these relations recommended: 500≤2006-01h×2006-02h≤1000 For example, if the velocity loop gain 2006-01h=40.0Hz, the time constant of the velocity loop integral shall satisfy: 12.50ms≤2006-02h≤25.00ms. Reducing the settings can strengthen the integration function and speed up the positioning time, but too small the settings are prone to mechanical vibration. If the settings are too high, the velocity loop deviation can't be returned to zero. When 2006-02h=512.00ms, the integral is invalid.			
3	2006-03h	Position proporti onal gain 1	Parameter function: Determines the highest frequency of changes in the position instruction that the position ring can follow. The highest following angular frequency of the position ring =2006-03h Increase 2006-01h Increase 2006-03h Actual speed Adjustment method: To ensure system stability, the maximum following frequency of the speed loop should be 3-5 times that of the position loop, so: $3 \le \frac{2 \times \pi \times 2006-01h}{2006-03h} \le 5$ For example, when velocity loop gain 2006-01h = 40.0Hz, The position loop gain should satisfy: 50.2 Hz $\le 2006-03h \le 83.7$ Hz. Adjust according to the positioning time. Increasing this parameter can speed up the positioning time and improve the ability of the motor to resist external disturbances when it is stationary. Excessively high settings may cause system instability and oscillation.			

Steps	Index codes	Name	Adjustment instructions
4	2007-03h	Torque filtering 1	Parameter function: Eliminate high-frequency noise and suppress mechanical resonance. Speed command Actual speed Adjustment method: It should ensure that the cut-off frequency of the torque command low-pass filter is 4 times higher than the maximum following frequency of the speed loop, so: $\frac{1000}{2 \times \pi \times 2007 - 03h} \ge (2006 - 01h) \times 4$ For example, when velocity loop gain 2006-01h = 40.0Hz, The time constant of torque command filtering should satisfy: 2007-03h \le 1.00ms. When vibration results from 2006-01h increasement, it can be suppressed by adjusting from 2007-03h. Please refer to "4.3.2 Vibration Suppression Low Pass Filter" for specific settings Excessively large settings may cause deduction of current ring response To suppress the vibration during stop, try increasing 2006-01h and decreasin 2007-03h; The motor vibration in the stop state is too large. It may try reducing the setting of 2007-03h.

The position loop gain Kp, velocity loop gain Kv, velocity loop integral Ti, and torque low-pass filtering time Tf are the basic loop gain parameters of servo control. A certain relationship needs to be maintained between the 4 basic gain parameters to ensure the balance between stability and high performance of the entire servo system. The mathematical relationship between the 4 basic parameters is as follows:

$$K_p \le \frac{\pi}{2} \cdot K_v$$

$$T_i \ge 4 \cdot \frac{1}{K_v}$$

$$T_f \le \frac{1}{4} \cdot \frac{1}{K_v}$$

Below, based on experimental waveforms, we will introduce the role of basic gain parameters in position control mode.

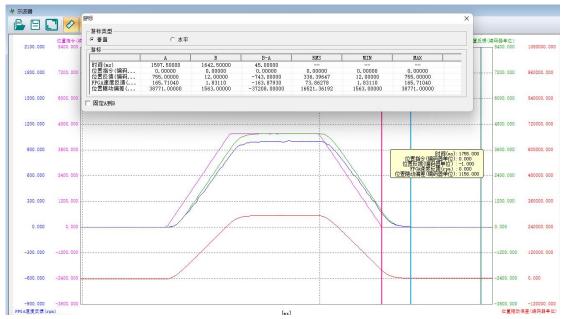


Figure 4-7 Waveform of position tracking without velocity integration

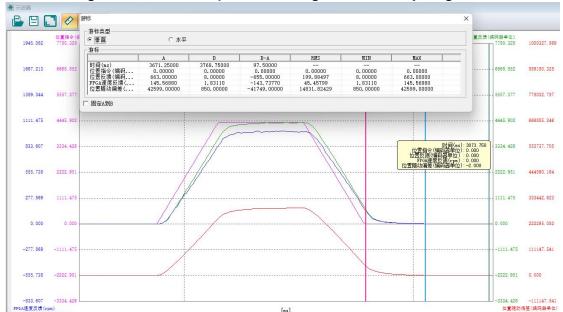
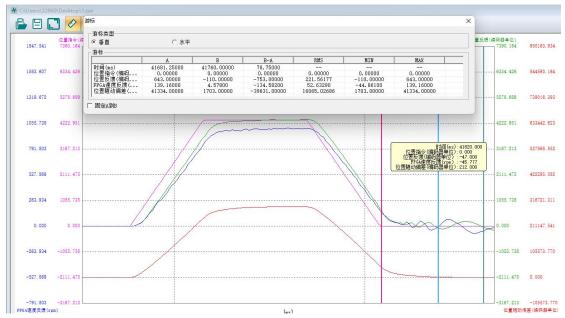



Figure 4-8 Waveform of position tracking with velocity integration

By comparing errors! Reference source not found. With errors! Reference source not found., It can be observed that when there are only position gain and velocity gain coefficients without velocity integration, fast positioning can be achieved with steady-state error. Increasing the loop gain can reduce steady-state error; When there is velocity integration, there is no steady-state error, but the tuning time becomes longer.

6Figure 4-9 No torque low-pass filtering

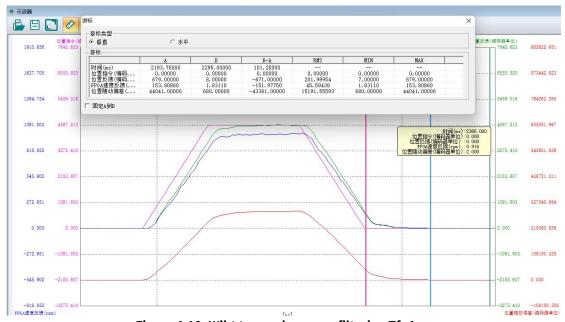


Figure 4-10: Wiht torque low-pass filtering Tf=4ms

By comparing errors! Reference source not found. And wrong! Reference source not found. It can be observed that adding torque low-pass filtering can eliminate torque oscillation, but the filtering transition frequency is low, the phase lag increases, and the gain cannot be improved, resulting in longer tuning time.

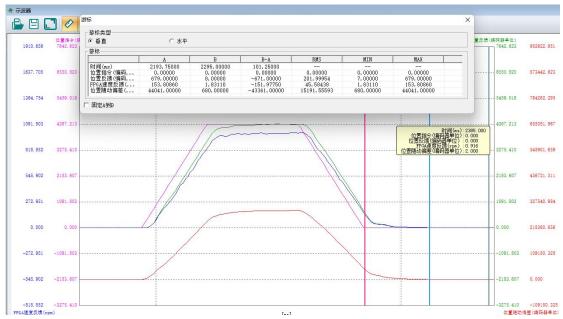


Figure 4-11 with torque low-pass filter with Tf=0.2ms

By comparing errors! Reference source not found. And wrong! Reference source not found. It can be found that by setting the torque low-pass filter reasonably, torque oscillation can be eliminated while ensuring fast position adjustment, achieving a good balance between speed and stability.

The specific function codes for gain class and torque control parameters are shown in the table below:

Table 4-4 Index codes for gain class and torque control parameters

	0x2	0x2007- Torque Control Parameter		
Subindex	0x01- Speed	0x02- Speed Integral	0x03 Position	0x03- Torque Filter 1
Subilidex	Proportional Gain 1	Gain 1	Proportional Gain 1	0x03-101que11ttel 1
Data type				
Accessibility	Readable/writable	Readable/writable	Readable/writable	Readable/writable
Unit	Hz ms Hz		ms	
DeError value	25	31.83	40	0.79
Min.	1	15	1	0
Max.	20000	51200	20000	3000
Setting and	Stop	Stop	Stop	Stop
effective mode	setting/immediate	setting/immediate	setting/immediate	setting/immediate
effective mode	enable	enable	enable	enable
Related mode			-	
Note		-	-	

(2) Feedforward control

Speed feedforward

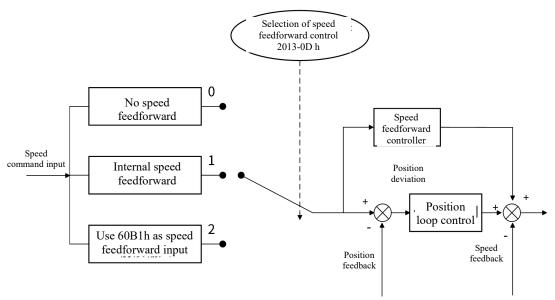


Figure 4-12 Block Diagram of Speed Feedforward Control

In position control mode, the theoretical speed command required for the action is directly calculated through internal position commands, and added to the speed command calculated by the position feedback loop. It is applied to the input of the speed regulator command, which can significantly reduce position tracking errors and improve response performance compared to simple feedback control. Therefore, using the speed feedforward function can improve the speed command response and reduce the position deviation when the speed is fixed. In theory, the relationship between position deviation and position loop gain, as well as velocity feedforward gain, is shown below. If the speed feedforward gain is set to 100%, theoretically the position deviation will become zero, but an excessively large feedforward gain coefficient will cause excessive speed overshoot during acceleration and deceleration.

When the update cycle of the position command is less than the servo control cycle, the differential operation of speed feedforward will cause significant differential errors, which will be converted into high-frequency torque command components, thereby inducing electromagnetic noise during operation. In this case, please use a position command filter (FIR filter or sliding mean filter), or increase the speed feedforward filter value.

Position deviation [command units] = Command speed [command units/s] / Position loop

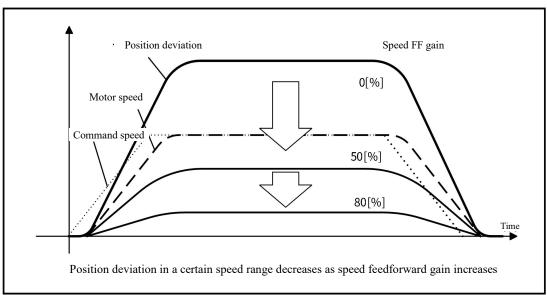


Figure 4-13 Relationship between speed feedforward gain and position deviation Operational steps for speed feedforward function:

A) Set the source of speed feedforward signal

Set 2013-0Dh(Speed Feedforward Control Selection) as a non-0 value, enable speed feedforward function, and the speed feedforward signal source can be selected internally and externally, shown as in the following table.

5Table 4-5 Speed Feedforward Control and Selection of Index Codes

Index codes	Name	Settings	Remarks
		0: No speed feedforward	-
2013-0Dh	Selection of speed feedforwar d control	1: Internal speed feedforward	Use the velocity data corresponding to position command as the source of the velocity feedforward signal.
2013-0DN		2: Use 60B1h as speed feedforward input	Use 60B1h speed bias (instruction unit/second) as the source of the speed feedforward signal. By using bit 6 of 607Eh (polarity), polarity of the velocity feedforward signal can be changed at this time.

B) Set speed feedforward parameters

Including speed feedforward gain (2006-09h) and speed feedforward filtering time (2007-07h).

6Table 4-6 Index codes for speed feedforward parameters

Index codes	Name	Adjustment instructions
2007-07h	Velocity feedforward filtering time	Reducing filtering time can suppress speed overshoot of acceleration and deceleration; Increasing the filtering time can suppress noise in situations where the update cycle of the position command is longer than the control cycle of the driver, and the pulse frequency of the position command is uneven, thus suppressing the jitter of the positioning completion signal;
2006-09h	Speed feedforward proportional gain	See error! Reference source not found.

Torque feedforward

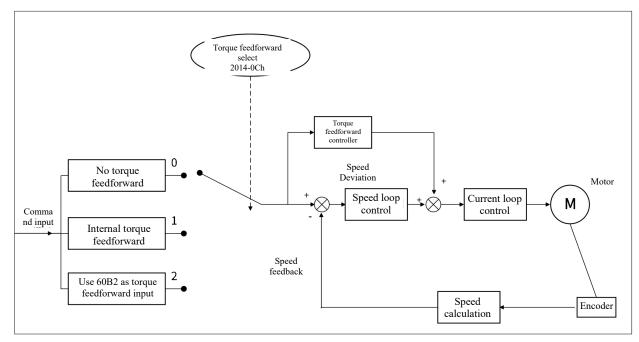
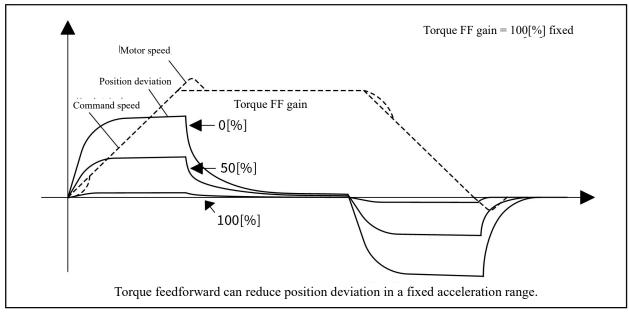



Figure 4-14 Torque Feedforward Control Operation Diagram

Position control mode, using torque feedforward can improve dynamic velocity response and reduce position deviation during fixed acceleration/deceleration; To use torque feedforward, it is necessary to set the correct load torque inertia ratio. Please refer to the mechanical load identification results in Section 0. The torque feedforward gain is set to a non-zero value, and the torque feedforward function is enabled. By increasing the torque feedforward gain, the position deviation during constant acceleration /deceleration can be controlled to around 0, and the trapezoidal motion curve can be perfectly tracked without external torque interference.

12Figure 4-15 Relationship between torque feedforward gain and position deviation of acceleration and deceleration sections

Operation steps for torque feedforward function:

A) Set the source of torque feedforward signal

Set 2014-0Ch (torque feedforward control selection) as non-zero value, enable the torque feedforward function. The feedforward signal source can be selected from internal and external sources, as shown in the table below.

Table 4-7 Parameter Index Code for Speed Feedforward Control Selection

Index	Name	Settings	Remarks
codes	114	o c c cgo	Normal No

		0: No torque feedforward	-		
			Use speed command as the source of torque		
	Selection of torque feedforward control	1: Internal torque	feedforward signal.		
2014 OCh		feedforward	In position control mode, the speed command comes		
2014-0Ch			from the output of the position controller.		
		2: Use 60B2h as torque feedforward input	Use 60B2h (torque bias, 0.1%) as the source of torque		
			feedforward signal.		
			By using bit 5 of 607Eh (polarity), the polarity of the		
			torque feedforward signal can be changed at this time.		

B) Set torque feedforward parameters

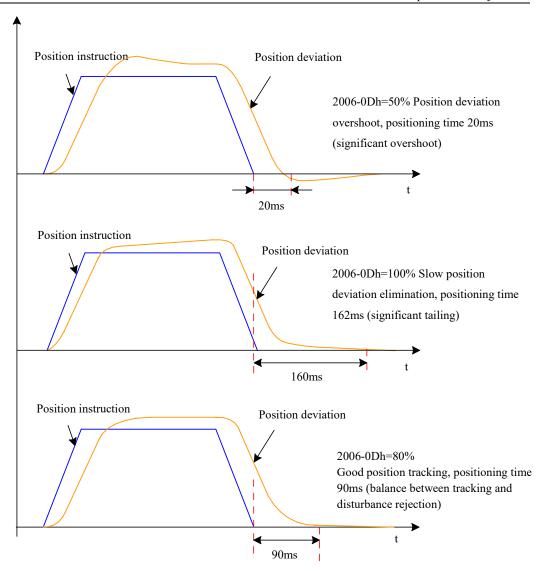

Including torque feedforward proportional gain (2006-0A) and torque feedforward filtering time (2007-08).

Table 4-8 Index codes for speed feedforward parameters

Index codes	Name	Adjustment instructions			
2006-0Ah	Torque feedforward proportional gain	Increasing the proportional gain can improve response, but overshoot may occur during acceleration/deceleration; Reducing filtering time can suppress overshoot during acceleration and deceleration; Increasing the filtering time can suppress noise;			
2007-08h	Torque feedforward filtering time	Adjustment method: When adjusting, first, keep the filtering time at the deError value; Then, gradually increase the proportional gain setting value from 0 until the torque feedforward effect is achieved at a certain setting value. When adjusting, the settings of 2006-0Ah and 2007-08h should be repeatedly adjusted to find a balanced setting			

(3) Two-degree-of-freedom control

In non torque control mode, two-degree-of-freedom control coefficient can be used to improve the control effect, set to 100%, which is the normal PI control mode; Setting it other than 100%, i.e., two-degree-of-freedom control, which can be used to increase resistance to external forces and improve velocity response waveforms. The following figure shows the improvement of the two-degree-of-freedom control coefficient on slow speed increase and slow positioning completion.

13Figure 4-16 Example of two-degree-of-freedom Control

two-degree-of-freedom control enhances the anti-interference ability of the velocity loop and improves its ability to follow speed commands by adjusting the velocity loop control method.

9Table 4-9 Index codes for two-degree-of-freedom feedforward coefficients

Index codes	Name	Adjustment instructions
2006-0Dh	Two-degree-of-fre edom feedforward coefficient	Parameter function: The control method for changing the speed loop in non torque control mode. Adjustment method: The setting of 2006-0Dh is too small, resulting in slow speed loop response; When overshoot exists in velocity feedback, gradually reduce 2006-0Dh from 100.0 until the two-degree-of-freedom control achieves effect at a certain set value. When 2006-0Dh=100.0, the velocity loop control method remains unchanged and deErrors to proportional integral control.

4.2.3 Gain Switching

The gain switching function is only effective in position and speed control mode and can be triggered by the internal

state of the servo or external DI. Using gain switching can have the following effects:

When the motor is enabled to be stationary, the position latched state can be switched to a lower gain to suppress vibration and reduce static noise;

During the motor stop process, when the position is set, it can be switched to a higher gain to shorten the positioning time;

It is possible to switch to a higher gain during motor operation to achieve better command tracking performance;

Different gain settings can be switched through external signals based on the load device situation.

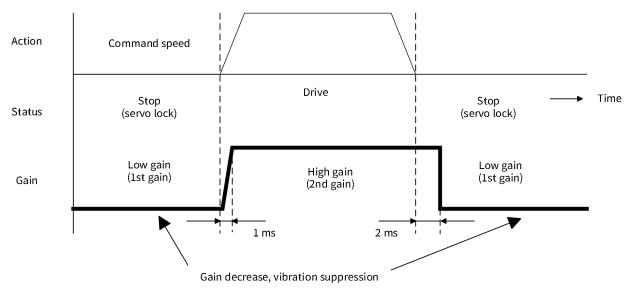


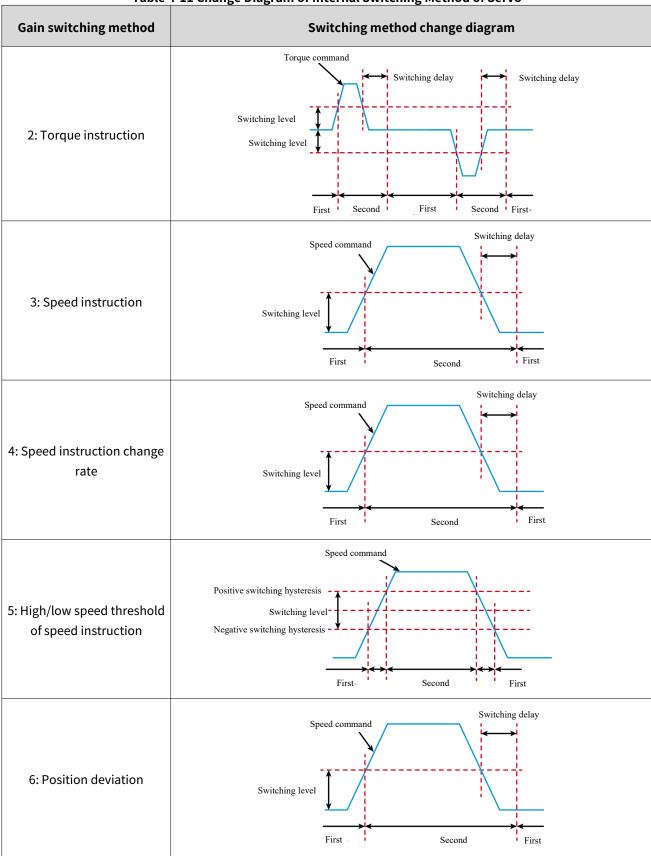
Figure 4-14 Gain Switching Diagram

give an example:

In the application scenario of LED die bonder, there is a demand for high-speed, high-precision and high response servo, which is a typical application of fast positioning P2P. The gain switching function is adopted to ensure fast setting requirement and reduce the noise when the servo is enabled to be stationary.

Table 4-10 Steps for peed gain adjustment

	Table 4-10 Steps for peed gain adjustment							
Para met er grou p	Steps for gain switching adjustment	Not using gain switching, adjust the gain manually		The second gain is set the same as base gain		Enable gain switching function		In static state, adjust the first group of gain parameters, eliminate static noise
P06	Velocity proportional gain 1	35.0Hz						27.0Hz
P06	Velocity integral gain 1	16.00ms						
P06	Position proportional gain 1	63.0Hz						
P07	Torque filtering 1	0.65ms					k	0.84ms
P06	Velocity proportional gain 2			35.0Hz				
P06	Velocity integral gain 2			16.00ms				
P06	Position proportional gain 2			63.0Hz				
P07	Torque filtering 2			0.65ms				
P06	Gain switching - Mode selection	0				1		
P06	Gain switching - Condition selection					10		
P06	Load inertia ratio	Obtained by inertia identification						


SV3 servo supports the following 10 gain switching methods, including 1 external DI switching and 9 switching methods upon internal motion status of the servo:

methous apon internal motion state	as of the servo.	
0: The first gain is fixed	(PS)	
1: Use external DI for switching	(PS)	
2: Torque instruction	(PS)	
3: Speed instruction	(PS)	
4: Speed instruction change rate	(PS)	
5: High/low speed threshold of spee	d instruction	(PS)
6: Position deviation	(P)	
7: With position instruction	(P)	
8: Positioning is incomplete	(P)	
9: Actual speed	(P)	
10: With position instruction + actua	l speed (P)	

Herein, (P) represents that that switching method only supports position control mode; (PS) represents that the switching method supports both position control and speed control modes. Below is the detailed instructions about

the 9 internal switching methods of the servo.

Table 4-11 Change Diagram of Internal Switching Method of Servo

Gain switching method	Switching method change diagram
7: Position instruction	Position instruction Switching delay First Second First
8: Positioning is completed	Positioning complete signal Switching delay First Second First
9: Actual speed	Switching delay Switching level First Second First
10: With position instruction + actual speed	Combination of method 7 and method 9 is generally chosen to ensure fast and stable setting in place

The delay time '06-12h' is only valid when the second gain is switched into the first gain.

12Table 4-12 Index codes for gain class parameters

12Table 4-12 Index codes for gain class parameters									
	0x2006- Gain class parameter								
Subindex	0x10- Gain Switching - Mode Setting 0x11- Gain Switching - Condition Selection		0x12- Gain Switching - Delay	0x13- Gain Switching - Level	0x14- Gain Switching - Time Delay	0x15- Gain Switching - Time			
Data type		UII	NT16						
Accessibili ty	Readable/writabl e	Readable/writable	Readable/ writable	read-only		read-only			
Unit	-	-	ms	-	-	ms			
DeError value	1	0	5.0	50	30	3.0			
Min.		0: The first gain fixed (PS)	0	0	0	0			
Max.	0: The first gain fixed, use external DI for P/PI switching 1: Switching between the first gain and the second gain is valid, and the switching condition is P06.16	1: Switching by external DI (PS) 2: High torque instruction(PS) 3: High speed instruction(PS) 4: High change rate of speed instruction(PS) 5: Speed instruction high/low speed threshold (PS) 6: Large positional deviation (P) 7: With position instruction (P) 8: Positioning is uncompleted (P) 9: Actual speed (P) 10: With position instruction+actual speed (P)	1000	20000	20000	1000			
Setting and	Run settings/Effective	Run settings/Effective	Stop setting/im	Stop setting/im	Stop setting/im	Stop setting/im			
effective mode	immediately	immediately	mediate enable	mediate enable	mediate enable	mediate enable			
Related mode			-						
Note			-						

4.2.4 Automatic gain adjustment

Automatic gain adjustment refers that SV3 servo drive automatically generates a set of matching basic gain parameters upon parameter settings of "P1A Group - Advanced Adjustment Function - Response Level Selection" so as to meet the requirement on speed and stability.

SV3 servo provides 2 automatic gain adjustment modes: 1. Basic mode; 2. Positioning mode.

Note:

Before using the automatic gain adjustment function, it is essential to correctly obtain the load inertia ratio!

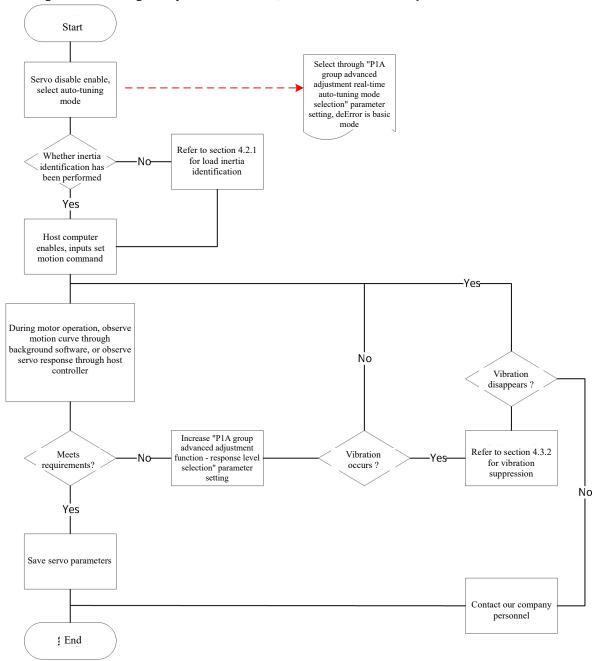


Figure 4-18 Steps for automatic gain adjustment

(1) Standard rigid table mode

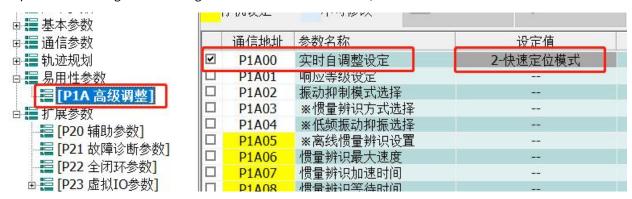
Real-time automatic gain adjustment - Standard rigid table mode(201A-01h=1) is suitable for most of situations, with response levels (201A-02h) ranging from 0 to 40 levels. The higher response level means the stronger gain and

the faster response. Based on different load types, the following empirical values are for reference:

13Table 4-13 Response Level Reference

Recommended response level	Type of load mechanism
Level 4 to Level 8	Some large machinery
Level 8 to Level 15	Applications with low rigidity such as belt
Level 15-20	Applications with high rigidity such as ball screws and direct connections
Level 20-40	Directly connected high rigidity, small inertia load application

Real-time automatic adjustment of standard rigid table mode (201A-01h=1), basic gain (2006-01h~206-03h, 2007-03h) parameters, automatically updated according to the response level set in 201A-02h and stored in the corresponding index code:


14Table 4-14 Real-time automatic adjustment mode with automatic parameter update

Index codes	Name					
2006-01h	Velocity proportional gain 1					
2006-02h	Velocity integral gain 1					
2006-03h	Position proportional gain 1					
2007-03h	Torque filtering 1					

(2) Quick positioning mode

Quick positioning mode (201A-01h=2)

The parameter settings on the background software are as follows:,

16Figure 4-19 Quick positioning mode setting

The quick positioning mode inside SV3 servo automatically realizes the gain switching function in Section 0 and the feedforward control function in Section 4.2.2, organically combining the two to realize the quick positioning function. Upon "Automatic Adjustment Standard Rigid Table Mode", the second gain parameter (2006-04h~2006-06h, 2007-04h) is also automatically updated and stored in the corresponding index code according to the response level set in 201A-02h, and the position loop gain of the second gain parameter should be 1 response level higher than the first gain parameter.

Table 4-15: Automatic Parameter Update for Quick Positioning Mode

Index codes	Name	
-------------	------	--

2006-04h	Velocity proportional gain 2
2006-05h	Velocity integral gain 2
2006-06h	Position proportional gain 2
2007-04h	Torque filtering 2

The parameters related to speed feedforward are set to fixed values:

Table 4-16 Fixed Parameters for Quick Positioning Mode

Index codes	Name	Parameters
2006-08h	Speed feedforward proportional gain	30.0%
2006-07h	Velocity feedforward filtering time	0.50ms

The parameters related to gain switching are set to fixed values:

In fast positioning mode, gain switching function is automatically enabled.

Table 4-17 Gain Parameters of Fast Positioning Mode

Index codes	Name	Parameters	Remarks
2006-10h	Gain switching - Mode selection	1	In fast positioning mode, the switching between the first gain (2006-01h~206-03h, 2007-03h) and the second gain (2006-04h~206-06h, 2007-04h) is valid; Maintain the original settings other than fast positioning mode.
2006-11h	Gain switching - Condition selection	10	In fast positioning mode, the gain switching condition is 2008-0Ah=10; Maintain the original settings other than fast positioning mode.
2006-12h	Gain Switching - Delay	5.0ms	In fast positioning mode, gain switching delay time is 5.0ms; Maintain the original settings other than fast positioning mode.
2006-13h	Gain Switching - Level	50	In fast positioning mode, gain switching level is 50; Maintain the original settings other than fast positioning mode.
2006-14h	Gain switching - time delay	30	In fast positioning mode, gain switching delay is 30; Maintain the original settings other than fast positioning mode

A Note:

In automatic gain adjustment mode, parameters that are automatically updated with response level selection (201A-02h); Parameters with fixed values can't be manually modified. In order to modify it, it must set 201A-01h of 0 and exit the real-time automatic adjustment mode.

0x201A - Advanced Adjustment						
Subindex	0x01- Real time self-adjusting settings 0x02- Response Level Setting					
Data type	UINT16					
Accessibility	Readable/writable Readable/writable					
Unit	-	-				
DeError value	7 16					
Min.	0: Invalid 0					
	1: Standard rigid table mode					
Max.	2: Quick positioning mode	40				
	5: Adaptive interpolation mode					
	7: Adaptive positioning mode					
Setting and effective	Run settings/Effective immediately	Run settings/Effective immediately				
mode	3,	,				
Related mode	PST					
Note		-				

4.3 Vibration suppression

4.3.1 Notch Filter

When the servo gain coefficient is relatively large, high-frequency vibration components can't be effectively attenuated, that would trigger system resonance. In order to maintain the servo response performance and drive the mechanical load smoothly without reducing the gain, it rquires to effectively suppress resonance. Generally, servo manufacturers will install notch filter in the front channel of control loop to attenuate loop gain amplitude at the resonance point by a fixed point so as to realize vibration suppression.

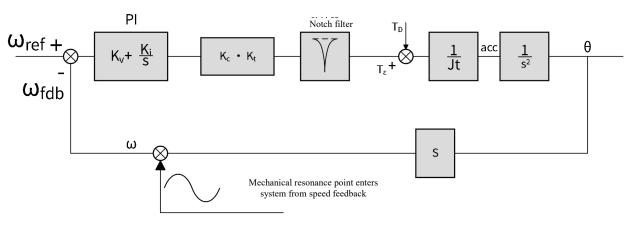


Figure 4-20 Block Diagram of Resonance Suppression Control

Transfer function of notch filter is

$$G_{notch}(s) = \frac{s^2 + 2\zeta_1 \omega_n s + \omega_n^2}{s^2 + 2\zeta_2 \omega_n s + \omega_n^2}$$

4.3.2 Vibration Suppression

SV3 servo has the built-in adaptive vibration suppression algorithm, which extracts vibration components from motor speed during actual operation, calculates the resonance frequency, and sets relevant parameters of adaptive notch filter automatically so as to realize vibration suppression.

(1) Automatic notch filter

To enable the adaptive notch filter function, just set "P1A Group - Advanced Adjustment - Vibration Suppression Mode Selection" of 1 or 2 in the backend software; SV3 servo supports up to 4 adaptive notch filters. When the system has 5 or more resonance points, it shall manually set the notch filters. It supports up to 4 different notch frequency settings.

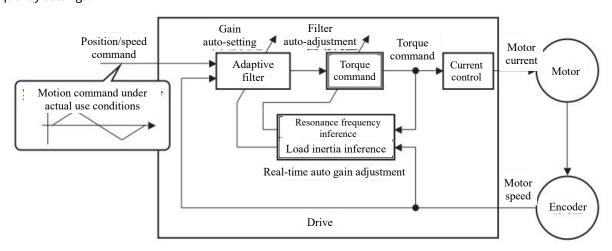


Figure 4-21 Block diagram of adaptive vibration suppression principle

A Note:

Under the following conditions, it might be impossible to perform normal automatic vibration suppression. In this situation, please perform manual vibration suppression.

Table 4-19 Factors of Adaptive Vibration

Table 4-13 lactors of Adaptive Vibration						
	Factors of adaptive vibration suppression					
Resonance	When resonance frequency is lower than the velocity response frequency					
Resoliance	When 3 or more resonance points exist					
characteristics	When vibration amplitude is small, or control gain is low, and the impact on motor speed is nonsignificant					
Mechanical properties	Nonlinear factors such as excessive tooth clearance in operation or excessive backlash in forward/reverse rotation, e.g., misaligned gear installation in gear transmission mechanism Vibration components randomly appear and last for a short period					
Movement conditions	Rapid acceleration/deceleration, when acceleration is greater than 30000rpm/s When the servo operates in torque mode					

(2) Manual notch filter

A) Analyze resonance frequency;

Using the manual notch filter, it's necessary to set the notch filter frequency as actual resonance frequency. The resonance frequency can be obtained by driving the oscilloscope interface of debugging platform, and there are 2 methods as follows:

Obtained by the motor current displayed on oscilloscope interface(phase current/torque command/current feedback). As shown in the figure below, the measured period is 0.625ms, and the calculated resonance frequency is:

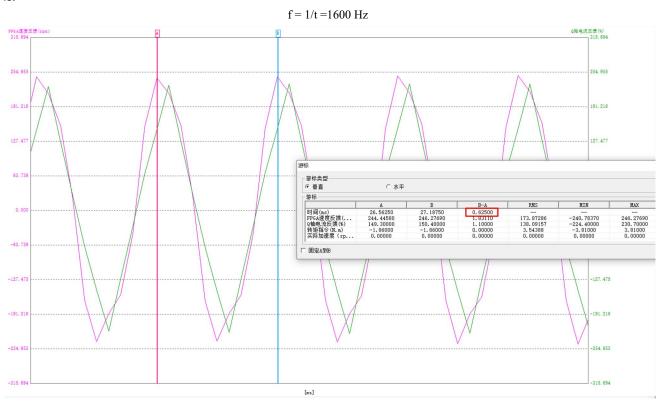


Figure 4-22 Screenshot of resonance frequency test ,on the background software

① Obtained by "resonance point identification" function on oscilloscope interface. As shown in the figure below, the measured resonance frequency is 1593.750Hz.



Figure 4-23 Screenshot of Resonance Point Identification Function on Backeground Software

B) Input the resonance frequency obtained in Step A) into notch frequency parameter of a notch filter, and other parameters generally don't need to be set;

	70111	2 30 2 2 20	VIII V 244	21. 37. 11.	1	37.73	T- H- H-E3
j	通信地址	参数名称	设定值	当前值	出厂值	单位	取值范围
	P0710	振动抑制频率1			5000	Hz	[50, 5000]
	P0711	振动抑制带宽1	(GP)		2	-	[0, 20]
	P0712	振动抑制衰减1			0	-	[0, 99]
	P0713	振动抑制频率2			5000	Hz	[50, 5000]
	P0714	振动抑制带宽2			2	-	[0, 20]
	P0715	振动抑制衰减2		122	0		[0, 99]
	P0716	振动抑制频率3) <u></u> :		5000	Hz	[50, 5000]
	P0717	振动抑制带宽3		- <u></u> -	2		[0, 20]
	P0718	振动抑制衰减3			0	-	[0, 99]
	P0719	振动抑制频率4	(50)	2 7.	5000	Hz	[50, 5000]
	P0720	振动抑制带宽4			2	-	[0, 20]
	P0721	振动抑制衰减4	· 		0	1 te	[0, 99]
	P0722	振动抑制频率5			5000	Hz	[50, 8000]
	P0723	振动抑制带宽5			2	-	[0, 20]
	P0724	振动抑制衰减5) -		0	/ = :	[0, 99]
	P0725	振动抑制频率6			5000	Hz	[10, 5000]
	P0726	振动抑制带宽6			2	-	[0, 20]
	P0727	振动抑制衰减6	(50)	11. - 11.11.	0	-	[0, 99]

Figure 4-24: Parameter Settings of Notch Filter

If resonance is suppressed, it proves that the notch filter is effective and the gain can be further adjusted. If new resonance occurs after the gain increases, repeat steps A) to B);

If vibration can't be eliminated for a long time, please turn off the servo enable in time to reduce the loop gain.

(3) Low-pass filter

It may also attenuate the amplitude of all high-frequency vibration components above the transition frequency to below the sensitive value by means of appropriate torque low-pass filter.

The torque command filtering can be set in 2 ways,

Background debugging software "P07 Group filtering parameters - torque filtering"

Object Dictionary Object Word (2007-03h)

By setting a filtering-time constant, make the high-frequency range above the cutoff frequency in torque command be attenuated so as to suppress mechanical resonance.

The setting parameter for torque low-pass filtering is the filtering-time constant, with a unit of 0.01ms. The conversion relationship between the filtering-time constant τm and the filter cutoff frequency fc is:

$$f_c = \frac{1}{2\pi \times \tau_m \times 0.001}$$

4.4 Common Application Scenarios

4.4.1 Load of ball screw

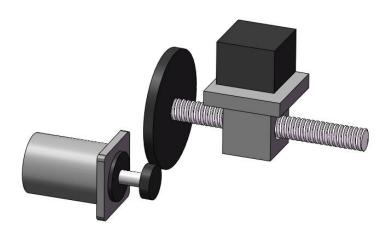


Figure 4-25 Ball screw transmission

(1) Feature of ball screw

Low friction resistance, the difference of dynamic and static friction forces is extremely small, ensure stable movement and avoid low-speed crawling. Low wear, long lifespan, and good precision retention.

After pre-tightening with double nuts, the clearance can be effectively eliminated and transmission stiffness is high.

Low friction loss, high transmission efficiency, up to 90% to 96%.

(2) Debugging precautions

The stiffness of screw load transmission is relatively high, and it is generally easy to adjust. If the inertia ratio is reasonable, only the inertia needs to be identified, and automatic gain adjustment can be performed according to Section 4.2.4 Automatic Gain Adjustment.

If high response performance is required, it is necessary to manually adjust the gain according to Section 4.2.2 Introduction on Manual Gain Adjustment, and even resonance analysis and suppression are required. Refer to Chapter 4.3 Vibration Suppression.

4.4.2 Synchronous Belt Load

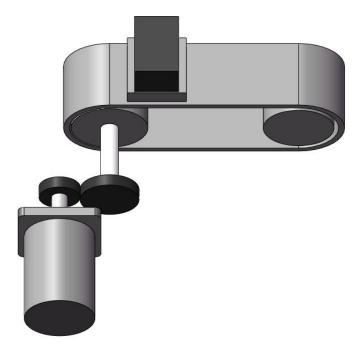


Figure 4-26 Synchronous belt transmission

(1) Feature of synchronous belt transmission

During operation, convex teeth of the synchronous belt mesh with teeth grooves of the belt to transmit motion and power.

During operation, as no sliding exists and and it has accurate transmission ratio, it's called synchronous belt. High transmission efficiency and good energy-saving effect. It has a high transmission efficiency, generally up to 98%.

Range of transmission ratio is large, the structure is compact, and the rigidity is weak.

(2) Debugging precautions

Short synchronous belt is easy to test. In the case of reasonable inertia ratio, it's only necessary to identify the inertia ratio and perform automatic gain adjustment.

If the synchronous belt is relatively long and has a large inertia, it's prone to overshoot during operation. The requirement for position command forms is high, and position command filtering can be performed under the servo.

4.4.3 Rack and pinion load

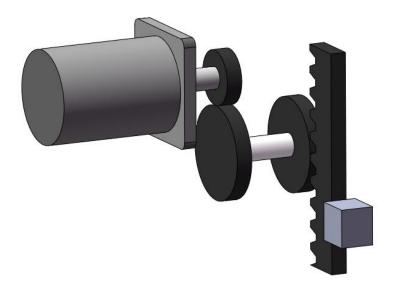


Figure 4-27 Gear and Rack Transmission

(1) Feature of Gear and Rack Transmission

Be able to configure larger reduction ratio, strong load driving capability. Increase output torque by reducing load operating speed.

Backlash of the transmission is big, that may lose partial transmission accuracy.

(2) Debugging precautions

Generally, reducer can effectively reduce the load inertia ratio, so such equipment has a relatively small inertia ratio and is easy to test. Generally, automatic gain adjustment is used.

The installation rigidity of rack at different positions may vary, and the machining accuracy of rack may differ. It's necessary to ensure that no vibration or operating noise occurs in the full-run range.

4.4.4 Inertia disk load

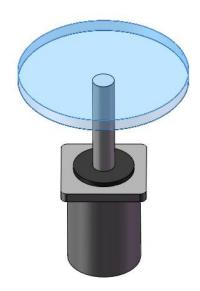


Figure 4-28 Directly connected inertia disk

(1) Load feature of directly connected inertia disk

Directly connected inertia disk load has good transmission accuracy.

Highly synchronized with motor, no backlash, high transmission rigidity.

Anti-resonance frequency is low. Max. bandwidth available of system shall be lower than anti-resonance points, besides being far away from resonance point.

(2) Debugging precautions

As this connection will inevitably bring a large inertia ratio to motor, speed gain can't be set too high.

Vertical installation condition of motor is generally used in indexing control applications, requiring fast and accurate start/stop.For adjustment, refer to Gain Switching in Section 4.2.3.

Horizontal installation condition of motor generally has a larger inertia and is more prone to vibration; The gain can't be set too high, that requires resonance analysis and suppression.

4.4.5 Long cantilever load

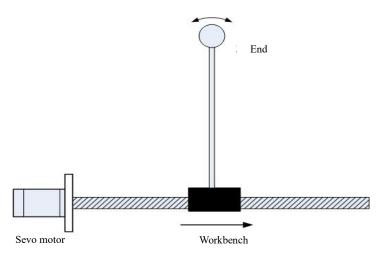


Figure 4-29 Long cantilever load

For long cantilever load, there is usually end jitter or overall equipment swing in high-speed motion. Vibration can be suppressed by eliminating frequency components from position command. SV3 servo provides a damping filter that can effectively suppress end jitter. Parameter "P07 group filtering parameters - position notch frequency A" can be set by the backend software to suppress low-frequency jitter.

出版 [PUZ 对应4/J右台沙文队]	PU/ZT	がたいない かいないがつ	77 .	\ _	U	10 7
□■基本参数	P0725	振动抑制频率6			5000	Hz
由 [[P03 IO参数]	P0726	振动抑制带宽6	77:	, .	2	7
由 [P04 运动控制参数]	P0727	振动抑制衰减6			0	-
由 등 [P05 功能设置参数]	P0734	※转矩二阶滤波频率	77	, -	5000	Hz
[P06 增益参数]	P0735	※转矩二阶滤波Q值			0.500	-
	P0736	※位置调节器输出滤波	77:	, 	0.00	ms
[P07 滤波参数]	P0737	※输入整形滤波频率A			100.0	Hz
■ □ [P00 保护参数]	P0738	※输入整形滤波阶数A			2	阶
🕀 🚟 [P09 显示参数]	P0739	※輸入整形態波衰减4			1.0	100
□ 讄 通信参数	P0747	位置陷波频率A			100.0	Hz
由 🏭 [P0A 通信参数]	P0748	※位置陷波克度A	(4)		2	(-)
□ 등 轨迹规划	P0749	※位置陷波频率比A	77	(-	1.2	-
由 ➡ [P13 位置控制参数]	P0769	磁栅尺速度波动抑制滤			0.50	ms
[P14 速度控制参数]	P0770	※MCU侧STO信号滤波			10	ms
[P15 转矩控制参数]	P0772	探针滤波			15	25ns
	P0774	低速脉冲指令滤波			30	25ns
□ [P16 预设速度任务参数]	P0775	高速脉冲指令滤波			3	25ns
[P17 预设位置任务参数]	P0776	速度到达信号滤波			10	ms
□ ■ 易用性参数	P0777	※速度显示滤波			50	ms

Figure 4-30: Screenshot of the upper computer for function code "position notch frequency"

There are 2 ways to obtain jitter frequency:

Obtain the end jitter frequency of mechanical load by external sensor, if Error! Reference source not found, as shown;

By waveform of the backend software, obtain end jitter frequency of motor. If Error! Reference source not found. As shown.

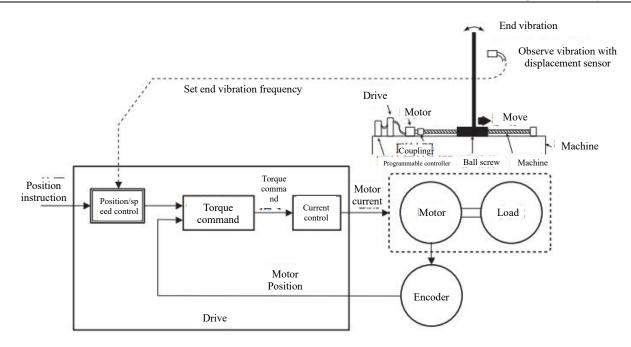


Figure 4-31 Method for acquisition and suppression of \Vibration Frequency of Long Cantilever Load

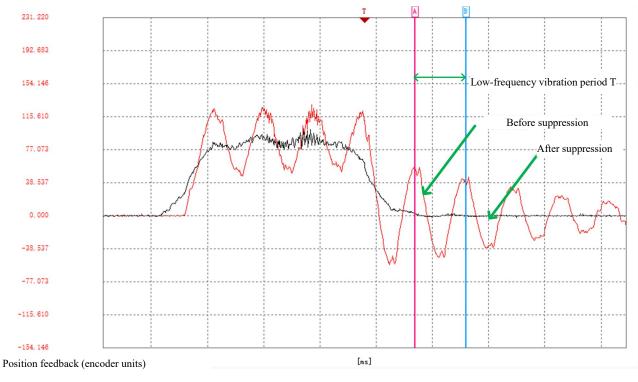


Figure 4-32 Vibration frequency acquisition and comparison of before-and-after suppression effects of long

cantilever load

After measuring the low-frequency vibration period by the background, the low-frequency resonance frequency can be calculated by f=1/T, and Parameter "P07 group filtering parameters - position notch frequency A" can directly be set. Note that the unit of this parameter is 0.1Hz.

Chapter 5 Troubleshooting and Alarm

5.1 Display and Review

Alarm of SV3 servo consists of Error and Alarm. The main difference is that when a Error occurs, the servo will stop; When a Alarm occurs, the servo can still run normally. According to the display of Error or Alarm on the panel, detailed description and solutions for corresponding Error or Alarm can be found in this manual. After power-on, if the servo panel is off or rdy is not displayed at the last 3 digits, possible causes and solutions are as follows:

Table 5-1 Troubleshooting for the Error that the power-on servo is not ready

Serial No.	Error cause	Confirmation method
1	Error of control power supply voltage	After CN1, CN3, CN4, and CN5 are removed, the Error still exists. Measure AC voltage between L1C and L2C.
2	Error of main power supply voltage	Check whether 220VAC/380VAC power supply for drives is normal per specifications.
3	Servo drive Error	Contact the manufacturer for after-sales service.

After power-on, when the servo has any Error or Alarm, the panel will present the corresponding display. Herein, definitions of the display are as follows:

Figure 5-1 Error display sample

For example, if E.010.0 is displayed on panel, it presents that servo drive has Error. The Error main code is 0x010, and the Error subcode is 0x0. The panel displays A.218.0, i.e., Alarm has occurred on the servo drive. Main code of the Alarm is 0x218 and its sub-code is 0x0.

After above Errors are rectified, rdy shall be displayed in the last 3 digits of panel.

SV3 servo drive has Error logging function which can record the last 10 Errors and Alarm names, and the status parameters of servo drive when the Error or Alarm occurred. If repeated Errors or Alarms occurred in the last 5 times, the Error or Alarm code(i.e., drive status) is recorded only once.

After Error or Alarm is reset, the Error and Alarm are still saved in the Error record. By Error & Alarm management module in Servo3 Designer, it can review and clear the records. For details, see the Servo3 Designer instruction. In addition, by Error & Alarm management module in Servo3 Designer, it can review the detailed information of present Error and reset it.

5.2 Error Code Overview

Table 5-2 List of error codes

Table 5-2 List of error codes			
Error code	Error name	Reset or not	CiA402 Protocol Error Code (603Fh)
E.010	Software parameter Error	×	0x6320
E.011	Error of software internal	×	0x7500
E.012	Error of software version not	×	0x7500
E.013	Error of software internal	×	0x7500
E.014	Error of software internal	×	0x0014
E.015	Error of current sampling	×	0x0015
E.016	Error of torque instruction	×	0x0016
E.017	Error of parameter storage	×	0x5530
E.018	Error of out-of-range	×	0x6320
E.019	Product matching Error	×	0x7122
E.210	Error of hardware overcurrent	×	0x2312
E.211	Error of output short-circuit to	×	0x2330
E.212	Error of UVW phase sequence	×	0x0212
E.213	Overrun Error	×	0x0213
E.214	Error of control power supply	×	0x3120
E.216	STO Error	$\sqrt{}$	0x0216
E.217	Error of input phase loss	$\sqrt{}$	0x3130
E.218	Error of servo emergency stop	$\sqrt{}$	0x5442
E.219	Error of drive overtemperature	$\sqrt{}$	0x4210
E.227	Error of output phase loss	$\sqrt{}$	0x0227
E.228	Error of abnormal precharge	$\sqrt{}$	0x0228
E.228	Error of abnormal precharge	$\sqrt{}$	0x0228
E.411	Error of DI allocation	$\sqrt{}$	0x6320
E.412	Error of DO allocation	$\sqrt{}$	0x6320
E.413	Error of current calculation	$\sqrt{}$	0x0413
E.414	Error of DC bus undervoltage	$\sqrt{}$	0x3220
E.415	Error of DC bus overvoltage	√	0x3210
E.416	Overspeed Error	$\sqrt{}$	0x8400
E.417	Error of startup overspeed	√	0x0417
E.418	Error of server repeatedly	$\sqrt{}$	0x5441
E.419	Error of drive overload	$\sqrt{}$	0x3230
E.420	Error of excessively-high	$\sqrt{}$	0x0420
E.421	Error of electronic gear ratio	$\sqrt{}$	0x0421
E.422	Error of fully closed loop	$\sqrt{}$	0x0422
E.423	Error of excessively large	$\sqrt{}$	0x8611
E.424	Error of position instruction	$\sqrt{}$	0x0424
E.430	Error of gantry compensation	$\sqrt{}$	0x0430
E.710	Overspeed Error	$\sqrt{}$	0x8400
E.711	Error of inertia identification	$\sqrt{}$	0x0711
E.712	Error of magnetic pole	$\sqrt{}$	0x0712

E.715	Error of motor parameter	$\sqrt{}$	0x0715
E.716	Error of gain self-adjusting	$\sqrt{}$	0x0716
E.910	Error of encoder parameters	×	0x7305
E.911	Error of encoder	×	0x7305
E.912	Error of encoder parameter	×	0x7305
E.913	Error of encoder 3-phase Hall	×	0x7305
E.914	Error of encoder disconnected	×	0x7305
E.916	Error of encoder disconnected	$\sqrt{}$	0x7306
E.917	Error of encoder battery	$\sqrt{}$	0x7305
E.918	Error of rncoder multi-turn	$\sqrt{}$	0x7305
E.919	Error of encoder multi-turn	$\sqrt{}$	0x7305
E.922	Encoder overheating Alarm	$\sqrt{}$	0x0922
E.B10	Error of motor overload	$\sqrt{}$	0x3230
E.B11	Error of motor stall	$\sqrt{}$	0x7121
E.B13	Error of motor vibration	$\sqrt{}$	0x0B13
E.B14	Running exception detection	$\sqrt{}$	0x0B14
E.B15	Error of motor PTC	$\sqrt{}$	0x0B15
E.D15	Error of upper/lower soft limit	$\sqrt{}$	0x0D15
E.D16	Origin bias out of soft limit	$\sqrt{}$	0x0D16
E.D20	EtherCAT communication	$\sqrt{}$	0x0D20
E.D21	EtherCAT communication	$\sqrt{}$	0x0D21
E.D22	EtherCAT communication	$\sqrt{}$	0x0D22
E.D23	EtherCAT extended card	$\sqrt{}$	0x0D23
E.D24	EtherCAT station name conflict	$\sqrt{}$	0x0D24
E.D25	EtherCAT station name setting	$\sqrt{}$	0x0D25
E.D26	EtherCAT communication	$\sqrt{}$	0x0D26
E.D27	EtherCAT system parameter	$\sqrt{}$	0x0D27
E.D28	EtherCAT configuration error	$\sqrt{}$	0x0D28
E.D29	EtherCAT not programming	$\sqrt{}$	0x0D29
E.D30	EtherCAT communication	$\sqrt{}$	0x0D30
E.D31	EtherCAT synchronization	$\sqrt{}$	0x0D31
E.D32	EtherCAT synchronization	$\sqrt{}$	0x0D32
/IN			

Note:

 $\sqrt{}$ indicates that this Error can be reset. For details about Error reset, see 5.5 Alarm Handling. It should be noted that any Error can be successfully reset only if its source has been removed.

X indicates that this Error can't be reset and must be powered on and off again.

5.3 Alarm Code Overview

All Alarms can be reset automatically after the Alarm conditions have been removed. Or press any key on the control panel to reset.

Table 5-3 List of alarm codes

Alarm display	Alarm name	CiA402 Protocol Error Code (603Fh)
A.220	Forward overtravel Alarm	0x5443

A.221	Negative overtravel Alarm	0x5444
A.222	Alarm of input phase loss	0x3130
A.224	Alarm of regenerative resistor overload	0x3210
A.225	Alarm of brake resistance disconnected	0x0225
A.226	Alarm of excessively small external regenerative resistance	0x6320
A.425	Alarm of zero return failure	0x0425
A.426	Alarm of power ON/OFF reset	0x6320
A.427	Alarm of parameter storage exception	0x7600
A.428	Alarm of frequency divider output setting error	0x0428
A.920	Encoder exception Alarm	0x7305
A.921	Alarm of low voltage of encoder battery	0x7305
A.928	ABZ encoder feedback overclock	0x0928
A.D35	Alarm of synchronous zeroing setting error	0x6320

5.4 Troubleshooting

Table 5-4 Troubleshooting list

Table 5-4 Troubleshooting list			
Error codes and their descriptions	Error cause	Handling measures	
E.010.0 Factory parameter verification is abnormal	 Software has been updated. An instant power-off occurs during parameter storage. Number of write times exceeds Max. value within a certain period. Error of servo drive. 	 Restore factory parameters (P0501=1). Power on again, after initialization of system parameters (P0501=1), re-write parameters. Change the parameter writing method. Replace the servo drive. Consult our technical support to update 	
Software internal communication initialization is abnormal.	Software versions of FPGA and MCU are inconsistent. FPGA Error.	the matching FPGA or MCU software. 2. Contact technical support of the manufacturer.	
E.012.0 Software version doesn't match the product model	FPGA version is too low. FPGA Error.	Update the matching FPGA or MCU software. Contact technical support of the manufacturer.	
E.013.0 FPGA interruption is lost	 FPGA Error. Handshake between FPGA and MCU is abnormal. Dive internal calculation timeout. 	Replace the servo drive. Contact technical support of the manufacturer.	
E.014.0 Communication between MCU and FPGA timeout	MCU communication timeout. Encoder communication timeout.	 Use our standard motor cable and encoder cable. Check whether cable connection is damaged. Separate high voltage cable and weak current cable. 	
E.015.0 Current chip sampling timeout	Check if output power line is broken or in poor contact. Current sampling timeout.	 Use our standard motor cable and encoder cable. Check whether cable connection is damaged. Separate high voltage cable and weak current cable. 	
E.016.0 Torque instruction update timeout	1. Servo drive Error.	Replace the servo drive. Contact technical support of the manufacturer.	
E.017.0 Parameter storage writing is abnormal.	1. EEPROM data Error.	 After system parameters are initialized (P0501=1), power it on again. Replace the servo drive. 	
E.018.0 Factory parameters are out of range	 Software is updated; Present value of function code exceeds the allowed range. EEPROM Error. 	 Power it on again, after initialization of system parameters (P0501=1), re-write parameters. Replace the servo drive. 	

Error codes and their descriptions	Error cause	Handling measures
	3. Servo drive Error.	
E.019.0 Encoder matching Error	 Product No.(motor or drive) doesn't exist. Power levels of motor and drive don't match. 	Replace the mismatched products according to "Supporting Equipment Specification of Servo System".
E.210.0 P/N phase overflow	 Brake resistance is too small or short circuit. Motor cable is in poor contact or short-circuited. Motor cable isn't properly grounded. Motor burned out. Improper gain parameter settings, motor vibration. Encoder cable Error. 	 Select an appropriate brake resistance and set related parameters according to the specification. Check if motor cable is properly connected and if there is short circuit, poor contact, or no grounding. Check if encoder cable is damaged. Re-adjust the gain. Replace the motor.
E.211.0 Output short-circuit to GND causes bus overvoltage	 Drive power line(UVW) is short-circuited to GND. Motor is short-circuited to GND. Servo drive Error. Bus voltage discharge(P0219) is set too low. 	 Reconnect or replace drive power cable. Replace the motor. Set the bus voltage release point (P0219) correctly.
E.212.0 UVW phase sequence Error	When the drive performs angle identification, UVW phase sequences of driver and motor doesn't match.	Connect UVW cables in the correct phase sequence.
E.213.0 Overrun Error	 UVW phase sequence wiring Error. Power-on interference causes the rotor initial phase error. The encoder model is incorrect or wiring is wrong. Under working condition of vertical axis, gravity load is excessive. 	 Connect UVW cables in the correct phase sequence. Power on/off it again and re-start angle self-learning. Replace the driver and motor that match mutually, and set motor model properly. Check if encoder and motor cables are properly connected. Reduce loads on vertical axis, or improve the rigidity, or shield this Error without affecting safety and use.
E.214.0 Undervoltage of control power supply	 Power supply voltage is unstable or it powers off. Control line in poor contact. 	 Check the wiring or replace cables. Power on it again. For abnormal power-off, ensure that power supply is stable. Increase the power capacity.

Error codes and their	Error cause	Handling measures	
descriptions E.216.0	1. STO disconnected causes STO	1. STO wiring is correct.	
STO disconnected	valid.	2. Replace the servo drive.	
E.217.0 One phase loss of 3-phase input	 Per 3-phase specification input drive is connected to single-phase input. 3-phase power input cable is in poor contact. 3-phase voltage is unbalanced or the 3-phase voltage is too low. 	1. Check the wiring of 3-phase power supply. 2. 3-phase drive and allow single-phase operation (below 1kW), switch off the alarm (set P0800=2).	
E.218.0 Error of servo emergency stop	1.DI function 2: Emergency stop is triggered.2. Background communication emergency stop is triggered.	1. Check the operating mode, and on the premise of safety remove the effective signal of DI brake(after the effective scram signal is removed, the Error is automatically reset).	
E.219.0 Error of drive overtemperature	 Ambient temperature is too high. After overload, power off to reset the overload Error, and repeat it for several times. Fan is damaged and can't work normally. It's unreasonable of installation direction of servo drive and interval between the servo drive and other servo drives. 	1. Improve cooling conditions of servo drive and reduce the ambient temperature. 2. Change Error reset method. Wait 30 seconds after overload, and then reset again. Increase the capacity of drive and motor, increase acceleration/deceleration time, and reduce the load. 3. Install servo drive per installation standard. 4. Replace the servo drive.	
E.227.0 Phase loss of UVW output	1. U/V/W phase power line of motor is broken.	Check the power cable connection of the motor, reconnect the cable, and replace the cable if necessary.	
E.228.0 Preloaded relay is not drawn	1. The hardware is damaged.	Replace the servo drive. Contact technical support of the manufacturer.	
E.228.0 Open circuit of precharge resistor	1. Open circuit of precharge resistor	Contact the factory for technical support.	
E.411.0 DI function is allocated repeatedly	When DI function is allocated, the same function is allocated to multiple DI terminals.	Re-allocate DI function to avoid duplication.	
E.412.0 Allocation of DO function is out of range	1. DO functio codes exceed number of DO functions.	Restore factory parameters and power on/off it again.	
E.413.0 Error of current calculation overflow	1. DQ axis current overflows.	 Restore factory parameters and power on/off it again. Replace the servo drive. 	

Error codes and their	Error cause	Handling measures
descriptions		o a
E.414.0 Error of DC bus undervoltage	 Power supply of main loop is unstable or power=off. Instantaneous power failure occurs. Power supply voltage drops during operation. Per 3-phase specification input drive is connected to single-phase input. 	 Adjust or replace the power supply per the specification of input power supply. Increase the power capacity. Shield phase loss Error detection.
E.415.0 Error of DC bus overvoltage	 Input voltage of main loop is excessive. Power supply is unstable or affected by lightning strike. Brake resistance fails. External brake resistance is too large, and Max. braking energy can't be fully absorbed. The sampled bus voltage has a large deviation. The motor runs in high acceleration/deceleration, and Max. braking energy exceeds the absorbable value. 	 Adjust or replace the power supply per the specification of input power supply. Connect the surge suppressor. Select the appropriate external brake resistance per the specification of external brake resistor. Increase the acceleration/deceleration time if possible.
E.416.0 Speed exceeds Max. RPM	 Error of U/V/W phase sequence of motor cable. Motor or encoder parameters are set improperly, e.g., pole-pair number, encoder resolution. Motor Angle identification is not done. Input command exceeds the overspeed threshold. Motor speed closed-loop overshoot. 	1. Perform the wiring in the proper U/V/W phase sequence. 2. Set motor parameters or encoder resolution properly. 3. Increase the power capacity. 4. Re-adjust the gain. 5. On the premise of the demand satisfied, reduce electronic gear ratio. 6. Set speed threshold within overspeed threshold.
E.417.0 Starting speed is higher than rated speed	When the drive is enabled, actual motor speed is higher than rated speed.	Reset the Error, reduce the actual speed, and re-operate the motor.
E.418.0 The servo is enabled repeatedly	When internal function is enabled, communication servo enable is valid.	Switch off servo enable signal of upper computer.

Error codes and their descriptions	Error cause	Handling measures
		1. Set P0102 per the drive model.
	1. Error of parameter settings.	2. Adjust parameters per the current
E.419.0	2. Drive load rate is excessive, load	feedback.
Error of drive overload	inertia is too large or the machine is	3. Replace it with a drive of larger power.
	stuck.	4. Adjust the machine to remove problems of
	3. Error of motor stall.	the machine stuck.
		5. Refer to E.B11.0 troubleshooting method.
E.420.0	Output pulse frequency exceeds	1. Reduce the number of frequency division output pulses (P1316) of encoder.
Error of excessively-high	upper limit of hardware frequency	2. Use twisted-pair shielded wire to prevent
frequency of frequency	allowed(4MHz for a single channel).	interference pulses from superimposing on
division output	attowed (1911) 2 for a single charmety.	real pulses, that might result in false alarm.
		1. Set gear ratio according to the range
E.421.0	1. Electronic gear ratio settings	specification of electronic gear ratio.
Error of local electronic	exceed the above range.	2. Use the Error reset function or power it on
gear ratio setting	2. Parameter change sequence	again.
E.422.0	1. In full closed-loop position mode,	
Full closed-loop can't	the source of position instruction is	1. When the full closed-loop function is used,
switch internal and	internal position instruction, but	and the position instruction source is
external loops in the	use internal/external ring switching	internal, only the external encoder feedback
multi-stage absolute	mode.	mode can be used, i.e., P2200 can only be 1.
position mode		
	1. Drive U/V/W output loses phase	1 De compost the coble proposity or replace
	or phase sequence is connected inproperly.	Re-connect the cable properly, or replace it.
	2. Drive U/V/W output is	2. Re-connect the cable, replace it with
	disconnected or the encoder is	brand-new one, if necessary, and ensure that
	disconnected.	it's reliably connected.
E.423.0	3. Motor stall from mechanical	3. Exclude mechanical factors.
Internal-ring position deviation is excessive	factors.	4. Adjust the gain manually or automatically.
deviation is excessive	4. Low servo drive gain.	5. Increase acceleration/deceleration ramp
	5. Increment of position instruction	of position instruction.
	is excessive.	6. Increase the deviation threshold
	6. Deviation threshold 6065h/P0806	6065h/P0806.
	is too small.	7. Replace servo drive or motor.
	7. Error of servo drive/motor.	
	1. Increment of position instruction	1. Reduce the increment of target position
F 424 0	is excessive.	instruction.
E.424.0 Position instruction has	2. Target position (607A target position) isn't aligned with the	2. Assign the value of present position to target position (607A target position) prior to
double overspeed for	present position prior to mode	mode switching or when the servo is
several times	switching or when the servo is	enabled.
	enabled.	3. Confirm if Max. speed of motor meets the
	3. Synchronization loss which	application requirement.

Error codes and their descriptions	Error cause	Handling measures
	causes excessive accumulation of position instructions. 4. Motor speed limit error.	
E.430.0 Write overflow of Gantry compensation data	Reserved	Reserved
E.710.0 Overflow of FPGA internal speed measured	Overflow of FPGA internal speed measured calculation .	 Check and confirm that encoder cable is properly connected. Power it on/off again and re-try it. Replace motor or drive.
E.711.0 Error of offline inertia identification	Offline inertia identification is uncompleted.	1. Contact the factory for technical support.
E.712.0 Error of magnetic pole identification	Failure of initial magnetic pole angle identification of motor.	1. Dis-connect motor shaft and re-identify the angle.
E.715.0 Exception of parameter identification result	1. Identification result is 0	1. Contact the factory for technical support.
E.716.0 Self-adjust gain is too small	1. Self-adjust gain is too small	Execute self-adjustment again; Contact technical support of the manufacturer.
E.910.0 Exception of encoder parameter verification during power-on	 Models of drive and motor don't match. Parameter verification error or no parameter stored in bus incremental encoder ROM. 	 Replace with a matching drive and motor. Check the encoder cable, please use our company standard encoder cable. Separate encoder cable from power cable.
E.911.0 (Detailed definition on pending)	 ault of encoder wiring. Encoder cable is loose. Encoder Z signal is interfered (EMC issues). Encoder Error. 	 Re-connect cables per the wiring diagram. Re-connect cables, and ensure that encoder terminals are firmly connected. Use standard encoder cables of our company. Replace the servo motor.
E.912.0 Error of encoder parameter verification	Bus incremental encoder cable is broken or loose. Exception of Read/Write parameters of bus incremental encoder.	 Check if encoder cable is improperly connected, broken, or in poor contact. Separate encoder cable from power cable. Replace the servo motor.
E.913.0 Error of reading initial	1. Models of drive and motor don't match.	 Replace with a matching motor and drive. Replace with quality encoder cable and fix

Error codes and their descriptions	Error cause	Handling measures
angle during power-on initialization	2. The encoder cable is broken.	it firmly.
E.914.0 Z signal line is broken	 Encoder Error causes Z signal loss. Poor wiring connection or wrong connection causes encoder Z signal loss. 	 Replace the servo motor. Check if the encoder cable is in proper contact, and re-connect or replace the cable.
E.916.0 Wire of full closed-loop grating ruler is broken	1. Frequency division output isn't disabled. 2. While using the full closed-loop function or non-standard pulse input, level difference of 2-way signals of any group A+/A-, B+/B-, Z+/Z- does not meet the requirement: Level difference is greater than or equal to 2V.	 Set P1315 value as 2 (frequency division or synchronous output disabled). Adjust the level until it meets the specification.
E.917.0 Error of encoder battery	 Absolute encoder isn't connected any battery during power-off. Voltage of encoder battery is too low. 	 Reconnect the battery or replace with a new battery. Set P2005 as 1 and clear the Error.
E.918.0 Error of rncoder multi-turn count	1. Encoder Error.	 Set P2005-2 to clear the Error and power on it again. Replace the motor.
E.919.0 Overflow of encoder multi-turn counter	1. As for overflow of absolute value encoder multi-turn count, only if multi-turn value is 32767 or 32768, it would report Error. This Error is reported by servo drive detection, not encoder.	1. Set P2005=2 to clear multiple-turn data of encoder and power on it again.
E.922.0 Encoder overheating Alarm	Temperature of encoder is too high.	 The drive stops for a period. Ensure the encoder is well ventilated to reduce environmental temperature.
E.B10.0 Error of motor overload	 Wiring of motor or encoder is wrong and bad contact. Load is too heavy; Effective output torque of motor exceeds the rated torque, and runs continuously for a long time. Acceleration and deceleration are too frequent or load inertia is too large. Gain adjustment is unsuitable or rigidity is too strong. Setting of drive or motor model is 	 Set parameters of drive model and motor model properly. Check the wiring by our company's standard wire and according to wiring diagram. Replace large-capacity drive and the matching motor, or reduce load to increase acceleration/deceleration time. Increase acceleration/deceleration time in a single run. Re-adjust the gain. Exclude mechanical factor.

Error codes and their descriptions	Error cause	Handling measures
	wrong. 6. Motor is stalled from mechanical factor, resulting in excessive load during operation.	
E.B11.0 Motor stall protection	 Phase missing, broken wire, phase sequence connection error of drive U/V/W output. Motor parameters are set impropery, e.g., number of pole-pairs. Motor Angle identification is not done. Communication command is interfered. Motor is stalled from mechanical factor. 	 Re-connect the cable properly, or replace it. Set motor parameters properly. Check if communication line between upper computer and the servo is interfered. Exclude mechanical factors, Check if motor stall occurs, occasionally stall and eccentric situation.
E.B13.0 Excessive motor vibration	1. Motor vibration is excessive	Adjust gain parameters Start vibration suppression
E.B14.0 Position exception detection		2. Start vibration suppression
E.B15.0 Thermistor line is broken or thermistor is disconnected	Thermistor line is broken or thermistor is disconnected	1. Check thermistor and its wires
E.D15.0 Error of upper/lower soft limit settings	Software lower limit is equal to or greater than the upper limit.	1. Reset parameters; Ensure that 607D-01h is smaller than 607D-02h(P0B45 is smaller than P0B47).
E.D16.0 Origin bias out of soft limit range	The origin is offset out of soft position limit.	1. Reset the parameters of 607D-01h and 607D-02h (P0B45/P0B47) reasonably.
E.D20.0 EtherCAT communication disconnected	Reserved	Reserved
E.D21.0 EtherCAT communication disabled	Reserved	Reserved
E.D22.0 EtherCAT communication connection timeout	Reserved	Reserved
E.D23.0 EtherCAT extended card communication timeout	Reserved	Reserved

Error codes and their descriptions	Error cause	Handling measures	
E.D24.0 EtherCAT station name conflict	Reserved	Reserved	
E.D25.0 EtherCAT station name setting error	Reserved	Reserved	
E.D26.0 EtherCAT communication exception	1. The server is enabled. Due to misoperation of master station or human misoperation, EtherCAT network status is switched from OP to other status, and network status switchover is abnormal.	Check network status switching program of upper computer.	
E.D27.0 EtherCAT system parameter error	Reserved	Reserved	
E.D28.0 EtherCAT configuration error	Reserved	Reserved	
E.D29.0 EtherCAT not programming XML file	 No XML programmed in EEPROM. XML file in EEPROM is modified abnormally. 	1. Programme XML file.	
E.D30.0 EtherCAT communication initialization failure	 FPGA software isn't programmed. Error of servo drive. 	 Contact the manufacturer to programme FPGA software. Replace the servo drive. 	
E.D31.0 EtherCAT synchronization cycle setting error	After network is switched to the operation mode, synchronization cycle isn't an integer multiple of 125us or 250us.	1. Change the synchronization cycle to an integer multiple of 125us or 250us.	
E.D32.0 EtherCAT synchronization signal excessive deviation	Synchronization cycle error exceeds the threshold; Synchronization cycle error of controller is excessive.	1. Increase factory parameter P0A32.	

5.5 Alarm Handling

Table 5-5 Alarm handling list

Table 5-5 Alarm handling list			
Error codes and their descriptions	Error cause	Handling measures	
A.220.0 Forward overtravel Alarm	For DI Function 9, forward limit input is valid and forward drive is disabled.	1. Check the operation mode, under the premise of safety, send motor reverse instruction or reverse the motor rotation so as to make positive limit invalid.	
A.221.0 Negative overtravel Alarm	1. For DI Function 10, reverse limit input is valid and reverse drive is disabled.	1. Check the operation mode, under the premise of safety, give the motor forward instruction or rotate the motor forward, so as to make reverse limit invalid.	
A.222.0 Alarm of input phase loss	1. Phase loss of 3-phase power input.	 Check the wiring of 3-phase power supply. 3-phase drive and allow single-phase operation (below 1kW), switch off the alarm (set P0800=2). 	
A.224.0 Brake resistor overload	 Wiring of external brake resistor is improperly. While using built-in brake resistor, power terminals P/D are disconnected. Erros of such parameters as brake resistor type, resistance and power. Input voltage of main loop exceeds the specification. Load moment of inertia ratio is excessive. Motor has been in the deceleration for a long period. Capacity of servo drive or brake resistor capacity is insufficient. 	 Check if wiring of external brake resistor is proper. While using the built-in brake resistor, connect P/D terminals properly. Set the parameters of brake resistor propertly. Per the specification, select the appropriate brake resistance. Use the appropriate power input per the specification. Reduce the load, or increase acceleration/deceleration time, or increase the operation cycle. 	
A.225.0 Software detects that the brake resistor is disconnected	1. Brake discharge resistor is disconnected, or P/RB terminals are not short-circuited;	1. Check the connection of brake resistor.	
A.226.0 External brake resistance is too small	While using external brake resistor, external brake resistance is less than Min.value by the specification.	 Per the specification, select the appropriate brake resistor, and connect it properly between P/C. Set the parameters of external brake resistor properly. 	
A.425.0 Alarm of the origin zero timeout	 Error of the origin switch. Search time for the origin is too short. Switch signal speed of high-speed search for the origin is too small. Switch setting is unreasonable. 	1. If hardware DI is used, ensure that DI Function 11 is configured in P03h group, and then check if wiring of DI terminal is normal; Error in the origin return operation was found, and operate this function correctly. If virtual DI is used, check if VDI handling process is proper. 2. Increase the origin search time P1349. 3. Increase return-to-zero high-speed 6099-01h. 4. Set hardware switch position reasonably.	
A.426.0 Alarm of power ON/OFF reset	1. After the parameters are changed, only when power ON/OFF	1. Power it ON/OFF again.	

	again, can parameters be valide.	
A.427.0 Alarm of parameter storage exception	Write data into EEPROM very frequently and abundantly.	 Reduce unnecessary parameters written into EEPROM. Set 2005-0Bh of 0 and do not store parameters into EEPROM.
A.428.0 Error of frequency division output setting	1. While using output function (P1315=0) of encoder frequency division, pulse number (P1316) setting of encoder frequency division doesn't meet the range requirement.	Reset the pulse number (P1316) of encoder frequency division so as to satisfy the specified range.
A.713.2 Sampling error Alarm	Contact the factory for technical support.	 Parameter identification can be performed repeatedly. Contact technical support of the manufacturer.
A.713.3 Check the error Alarm of rising edge	Contact the factory for technical support.	Parameter identification can be performed repeatedly. Contact technical support of the manufacturer.
A.713.4 Check overshoot error Alarm	Contact the factory for technical support.	Parameter identification can be performed repeatedly. Contact technical support of the manufacturer.
A.713.5 Alarm of Q-axis current steady state error test	Contact the factory for technical support.	Parameter identification can be performed repeatedly. Contact technical support of the manufacturer.
A.713.6 Alarm of D-axis current steady state error test	Contact the factory for technical support.	 Parameter identification can be performed repeatedly. Contact technical support of the manufacturer.
A.920.0 Encoder internal algorithm error	 The encoder zero search algorithm fails. Error of frequency division counting algorithm of encoder. 	 Power on/off the servo drive again. Replace the servo motor.
A.921.0 Encoder battery voltage is too low	1. Battery voltage of absolute encoder is lower than 3.0V.	Replace it with the new matching battery.
A.D35.0 Error of 6098h parameter settings in return-to-zero mode	1. In return-to-zero mode, input non-existent return-to-zero modes such as 15/16/31/32 in EtherCAT 6098h (or P0B.30 of PN)	1. EtherCAT model is properly set to 6098h (PN model is properly set to P0B.30).
nr Servo not ready	 Control loop voltage is too low; Bus voltage of power loop is too low; Exception of encoder feedback; 	 Confirm that AC power supply of the drive is normal per the specification. Remove the motor structure being reversed, or replace the motor encoder.

5.6 Resetting Methods

There are 3 ways as follows to reset Errors and Alarms of SV3 servo:

Set parameter P20.03 = 1 to reset.

Reset via DI input (Function 5, Error reset);

Reset by setting the rising edge of Bit7 of control word 0x6040 through the upper computer;

Herein, for Error reset, the servo should be disabled first, and then the Error reset signal is sent; For Alarm reset, the Error reset signal can be directly sent. The premise for Error reset is that Error condition has been removed. After the Alarm condition is removed, the Alarm will automatically reset.

Chapter 6 EtherCAT Communication

The application of Ethernet technology in computer networks to industrial automation constitutes industrial control Ethernet, generally known as industrial Ethernet or Ethernet fieldbus; Those servo drives that add Ethernet fieldbus are called Bus Servo, which is the principal development trend of servo drive. Compared with traditional bus servo and pulse servo, it has the following advantages:

Industrial Ethernet has fast transmission speed, large packet capacity, and long transmission distance; Utilize general Ethernet components, cost-effective;

Compatible with the standard Ethernet system, can access the standard Ethernet end;

The network topology is diversified, the lines are simple, and it's easy to extend.

6.1 Overview

6.1.1 Overview of EtherCAT

EtherCAT is the abbreviation of Ethernet for Control Automation Technology, which is an Ethernet-based fieldbus technology proposed by German Beckhoff company in 2003. It is currently managed by ETG(EtherCAT Technology Group). EtherCAT is a high-speed and efficient Ethernet bus, and supports a variety of topologies such as line, tree, star, etc. Slave node uses a special control chip (ESC), and master station uses a standard Ethernet controller. Main features of EtherCAT are as follows:

Wide applications, any control unit of commercial Ethernet controller can be used as EtherCAT master station.

Fully compatible with standard Ethernet, both can coexist in the same system;

Short delay, data transmission of single-axis slave station can't exceed 1us;

The data refresh cycle is short, and it can reach the data refresh cycle less than 100us.

Good synchronization, synchronization accuracy less than 1us;

High efficiency, maximize the use of Ethernet broadband for user data transmission;

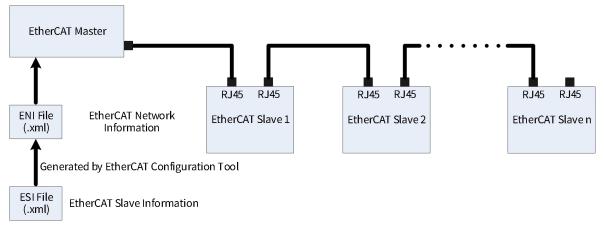
Currently, EtherCAT has entered several relevant international standards:

Type12 in IEC61158;

CPF12 in IEC61784;

In IEC61800, EtherCAT supports CANopen DS402 and SERCOS.

In ISO15745, EtherCAT supports DS301.


The topology of EtherCAT system supports a variety of topologies such as star, tree, and line. At present, mainstream servo drives may reserve 2 network interfaces which are used as IN/OUT port of signal. EtherCAT can select the physical medium of 100Base-TX standard Ethernet cable or optical cable. As for 100Base-TX cable, the distance between stations can reach 100m and the entire network can link up to 65,535 devices.

EtherCAT uses a specific Ethernet data frame type(0x88A4) definition to transfer EtherCAT data packets by Ethernet data frame. EtherCAT packet can also be transferred in UDP/IP protocol format. An EtherCAT packet can consist of multiple EtherCAT sub-messages. EtherCAT slave station doesn't process non-EtherCat data frames, and non-EtherCat data frame can be packaged in segments into EtherCAT data sub-message for transparent transmission in network segment, so EtherCAT slave system and standard Ethernet devices can coexist on the same system through network links and are independent of each other.

6.1.2 Host/Slave System Composition

EtherCAT system follows the principle of one master and multiple slaves. Number of slave stations that a master station can link depends on the processing capacity of the master station, communication cycle, transfer volume, etc., but Max. number of slave stations shall not exceed 65,535.

Master station works on the basis of ENI files which are generated by ESI files provided by our company through EtherCAT Configuration Tool or suppliers of master station in a special way.

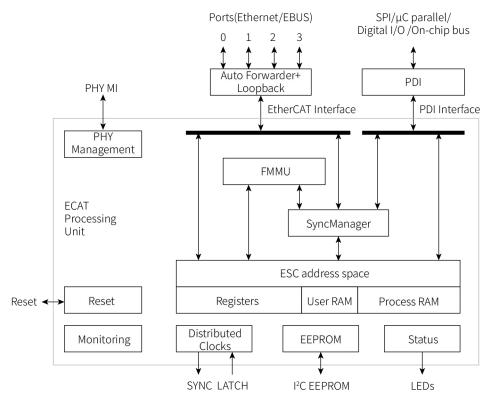
EtherCAT Slave Information (ESI):

Files in .xml format provided by our company.

Records information inherent to slave station, including supplier information, product information, profile, data type, object dictionary, process data, synchronization method, SyncManager settings, etc.

EtherCAT Network Information (ENI):

Files generated by master station on basis of information of slave stations.


ENI contains information to identify slave station and initialize each slave station. Master station initializes the network and constructs the system based on the information recorded in ENI.

6.1.3 ESC Overview

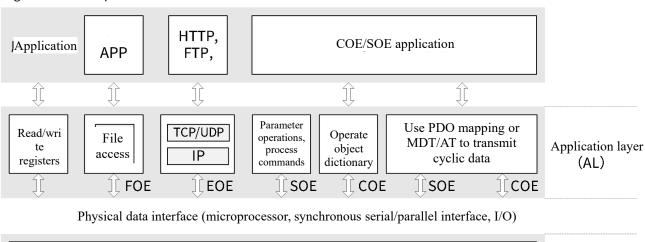
ESC, the full name is EtherCAT Slave Controller, i.e., controller of EtherCAT slave station, is the key part of EtherCAT technology. It's the intermediate component of master-and-slave station communication. The following is the mainstream information on ESC in markets.

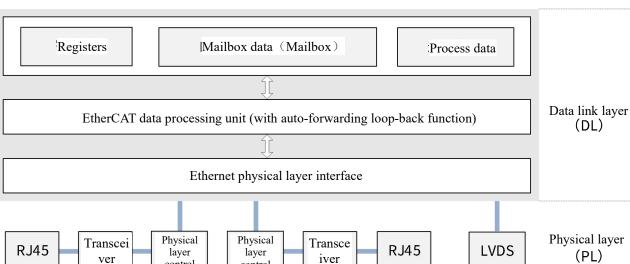
Feature	ET1200	ET1100	IP Core	ESC20
Ports	2~3 (eachEBUS/ MII,max.1xMII)	2~4 (eachEBUS/MI)	1~3 MII/1~3 RGMII/ 1~2 RMII	2 MII
FMMUS	3	8	0~8	4
SyncManagers	4	8	0~8	4
RAM [Kbyte]	1	8	0~60	4
Distributed Clocks	64bit	64bit	32/64bit	32bit
Process Data Interfaces				
Digital I/O	16bit	32bit	8~32bit	32bit
SPI Slave	Yes	Yes	Yes	Yes
8/16 bit μController	-	Async/Sync	Async	Async
On-chip bus	-	-	Yes	-

The internal architecture and external interfaces are shown as follows:

ESC processes EtherCAT data frames. ESC of each EtherCAT slave station reads and writes data frames according to its physical position on the loop. When a message passes through the slave station, the built-in processing unit of ESC extracts sub-message data sent by master station from messages and stores it in the internal storage area. Output data is written from internal storage area to the corresponding sub-message; Data extraction and insertion are completed by the hardware of data link layer.

The number of sending/receiving ports for each ESC is slightly different. Taking ET1100 for example, it has 4 PORTs, each PORT can send and receive Ethernet data frames which has the fixed sequence in ESC transmission. As there is the data processing unit between PORT0 and PORT3, it's better for data to enter ESC from PORT0. If ESC detects that a PORT has no external link, it automatically closes that PORT, and data is looped back and forwarded to the next PORT automatically. Therefore, the servo supports at least 2 ports.


ESC can use 2 physical layer interface modes: MII and EBUS. MII is the standard physical layer interface of Ethernet that requires external physical layer chip. Transmission delay of one port is about 500us. EBUS is the data transmission standard defined by German Beckford Company using LVDS(Low Voltage Differential Signaling) standard, which can directly link to ESC chip without any extra physical layer chip. Transmission delay of one port is about 100ns. EBUS has a maximum transmission distance of 10m and is suitable for links between I/O devices or servo drives in close proximity.


6.1.4 Structure of EtherCAT Application Layer Protocol

control

control

Application Layer (AL) is the highest functional layer of EtherCAT protocol. It's directly oriented to control task, which provides the means for control program to access the network environment, and provides services for control program. EtherCAT protocol structure is as follows:

6.2 EtherCAT Specification

6.2.1 EtherCAT Frame Structure

As EtherCAT uses the standard IEEE 802.3 Ethernet frame, standard network controller can be used, and no special hardware is required on master station. EtherCAT only extends IEEE 802.3 Ethernet specification and doesn't make any change to basic structure of Ethernet protocol.

EtherType of EtherCAT Header is 0x88A4, which distinguishes it from other Ethernet frames. Subsequently, EtherCAT can run in parallel with other Ethernet protocols.

EtherCAT doesn't require IP protocol, but can encapsulate it into IP/UDP. EtherCAT slave controllers process frames in a hardware method. Therefore, communication performance is independent of processor power.

An EtherCAT frame can be divided into EtherCAT frame header, followed by one or more EtherCAT datagrams. There must be at least one EtherCAT datagram in data frame. Currently, ESC only processes EtherCAT frames with the type of 1 in EtherCAT header. ESC also supports IEEE802.1Q VLAN tags, although ESC doesn't evaluate the content of VLAN tags.

If EtherCAT frame size doesn't meet Min. size requirement of Ethernet frame(64bytes), padding bytes (typically padding 0) must be added. Size of EtherCAT frame is exactly the sum of all EtherCAT datagrams plus EtherCAT header(i.e., EtherCAT header+datagrams).

The following diagram shows how an Ethernet frame contains EtherCAT data:

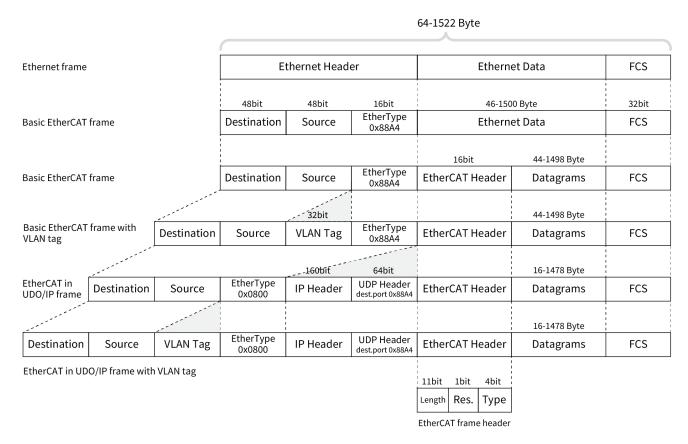


Figure 6-1 How does an Ethernet frame contain EtherCAT data

Table 6-1 Description on EtherCAT Header

Field	Data Type	nta Type Value/Description	
Length	11bit	Length of the EtherCAT datagrams(excl.Fcs)	
Reserved	1bit	Reserved,0	
Type	4bit	Protocol type.only EtherCAT commands(type=0x01) are supported by ESCs	

ESC doesn't care about the length of EtherCAT Header(i.e., length), ESC cares about the length of Datagram section. Structure of EtherCAT frame:

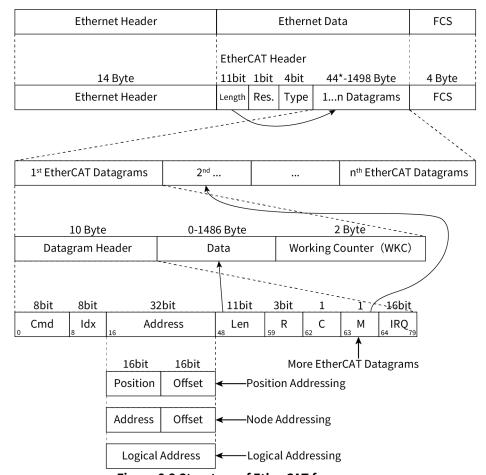


Figure 6-2 Structure of EtherCAT frame

Note: When Ethernet frame is shorter than 64bytes, add 1 to 32bytes(Ethernet Header+Ethernet Data+FCS).

Table 6-2 EtherCAT Datagram

Field	Data Type	Value/Description
Cmd	Durto.	EtherCAT Command Type;
Cilia	Byte	Instruction type, i.e., the way to find;
		The index is a numeric identifier used by the master for identification of
ldx	Durto.	duplicates/lost datagrams. It shall not be changed by EtherCAT slaves;
lux	Byte	Index is a digital identifier used by master station to distinguish duplicate or
		lost datagrams; Slave station can't modify it.
A d due = =	D. 4 a [4]	Address (Auto Increment, Configured Station Address, or Logical Address);
Address	Byte[4]	Address(auto-addressing, configured site addressing, logical addressing);
Lon	Len 11bit	Length of the following data within this datagram;
Len		Length of data in Datagram;
R	3bit	Reserved, 0;
		Circulating frame:
С	1bit	0: Frame is not circulating;
		1: Frame has circulated once;
M	1hi+	More EtherCAT datagrams;
M 1bit	TDIL	0: Last EtherCAT datagram;

		1: More EtherCAT data.grams will follow, EtherCAT datagram will follow;					
		EtherCAT Event Request registers of all slaves combined with a logical OR;					
IRQ	WORD	All EtherCAT Event Request registers (0x210::0x211) of slave station perform					
		logical or.					
Data	Byte[n]	Read/Write Data;					
		Working Counter;					
		Details are as follows:					
		Command	Operate	Increment			
		Dand assumed	Not successful	Increment No change +1 No change +1 No change			
		Read command	Read successfully	+1			
WILC	WODD	Muito o o o o o o	Not successful	No change			
WKC	WORD	Write command	Write successfully	+1			
			Not successful	No change			
			Read successfully	+1			
		Read/Write command	Write successfully	+2			
			The read and write	Increment No change +1 No change +1 No change +1 No change +1			
			were both successful				

6.2.2 Addressing Mode

Two modes for EtherCAT device addressing are supported in a network segment: device addressing and logicaladdressing. EtherCAT provides 3 device addressing modes: auto increment addressing, configured station address, and broadcast (broadcast addressing). EtherCAT device can have up to 2 configured station addresses: one is assigned by the master (Configured Station Address) and the other is stored in SII EEPROM. It can be changed by the slave station application (Configured Station Alias address). EEPROM settings of Configured Station Alias address takes over only when EEPROM is loaded for the first time after power-on/reset.

Table 6-3 Addressing methods

Mod	de	Field	Data Type	Remarks
				Each slave station will increase Position
	Auto-incremen	Position	WORD	by 1, if position=0, then addressing is
	t addressing			successful;
		Offset	WORD	ESC logical register or memory address;
				If Address matches either Configured
Device			WORD	Station Address (Configured station
	Configured	Position		address) or Configured Station Alias
addressing	station address			(Configured station alias)(if enabled),
				the slave station will be addressed.
		Offset	WORD	ESC logical register or memory address;
	Broadcast	Position	WODD	Each slave station increase 1 to Position,
		Position	WORD	but not used for addressing;
		Offset	WORD	ESC logical register or memory address;
				Logical Address (configured by FMMUs).
Logicaladdressing		Address	DWODD	If Address matches logical address
			DWORD	configured by FMMU, addressing is
				successful.

Table 6-4 Cmd details

Addressing		Abbre		
mode	Cmd	viation	Name	Remarks
-	00h	NOP	No Operation	No operation is executed.
	01h	APRD	Auto Increment Read	Each slave station has an incremental increase of Address. When slave station receives a frame with Address value of 0, the slave station reads data in the specified memory unit and inserts EtherCAT datagram. Position of EtherCAT datagram will be increased by 1,.
Position Addressing	02h	APWR	Auto Increment Write	Each slave station has an incremental increase of Address. When slave station receives a frame with Address value of 0, slave station receives the data and writes it to the specified local storage unit. Position of EtherCAT datagram will be increased by 1.
	03h	APRW	Auto Increment Read Write	Each slave station has an incremental increase of Address. When slave station receives a frame with Address value of 0, the specified local storage unit exchanges data (read&write) with the data frame EtherCAT datagram. Position of EtherCAT datagram will be increased by 1.
	04h	FPRD	Configured Address Read	When the address configured for slave station is the same as Address value of EtherCAT datagram, slave station reads data in the specified memory unit and inserts EtherCAT datagram.
Node Addressing	05h	FPWR	Configured Address Write	When the address configured for slave station is the same as Address value of EtherCAT datagram, slave station receives data and writes it into the specified local storage unit.
	06h	Configured 06h FPRW Address Read Write		When the address configured for slave station is the same as Address value of EtherCAT datagram, the specified local storage unit exchanges data (read&write) with the data frame EtherCAT datagram.
	07h	BRD	Broadcast Read	All slave stations read data in the specified memory unit, perform logical-or operations with data of EtherCAT datagram, and then store the data to EtherCAT datagram. Position of EtherCAT datagram will be increased by 1.
Broadcast	08h	BWR	Broadcast Write	All slave stations store EtherCAT datagram in the specified storage unit. Position of EtherCAT datagram will be increased by 1.
	09h	BRW	Broadcast Read Write	All slave stations read data in the specified memory unit, perform logical-or operations with data of EtherCAT datagram, then inserts the data to EtherCAT datagram, and store the original EtherCAT datagram

		I	
			in the specified memory unit. Position of EtherCAT
			datagram will be increased by 1.
			If the received address matches one of the configured
0Ah	LRD		FMMU areas, slave station reads data in the specified
		Read	memory unit and inserts EtherCAT datagram.
			If the received address matches one of the configured
0Bh	LWR		FMMU areas, slave station receives data and writes it
		Write	in the specified local storage unit.
			If the received address matches one of the configured
0Ch	LRW	Logical Memory	FMMU zones, the specified local storage unit performs
		Read Write	data exchange (read&write) with the data frame
			EtherCAT datagram.
			If the received address is 0, slave station reads data in
		Auto Increment	the specified memory unit and inserts EtherCAT
0Dh	ARMW	Read Multiple	datagram; Otherwise, slave station receives data and
		Write	writes it into the specified local storage unit.Position
			of EtherCAT datagram will be increased by 1.
			If received address is the same as configured address,
		Configured	slave station reads data in the specified memory unit
0Eh	FRMW	Read Multiple	and inserts EtherCAT datagram; Otherwise, slave
		Write	station receives data and writes it into the specified
			local storage unit.
0Fh~FFh	-	reserved	-
	OBh OCh ODh	OBh LWR OCh LRW ODh ARMW	OBh LWR Logical Memory Write OCh LRW Logical Memory Read Write ODh ARMW Auto Increment Read Multiple Write OEh FRMW Read Multiple Write

6.2.3 Frame Processing Sequence

Frame processing sequence by EtherCAT slave station controller depends on logical port No.

Table 6-5 Frame processing sequence

Port No.	Frame processing sequence
1	0→EtherCAT Processing Unit→0
2	0→EtherCAT Processing Unit→1 / 1→0
2	0→EtherCAT Processing Unit→1 / 1→2 / 2→0
3	Or, 0→EtherCAT Processing Unit→3 / 3→1 / 1→0
4	$0 \rightarrow \text{EtherCAT Processing Unit} \rightarrow 3/3 \rightarrow 1/1 \rightarrow 2/2 \rightarrow 0$

The direction through ESC that includes EtherCAT processing units is called the "processing" direction, while other directions that don't pass through EtherCAT processing units are called the "forwarding" direction. The behavior of an unimplemented port is similar to that of a closed port; That data frame will be forwarded to the next port.

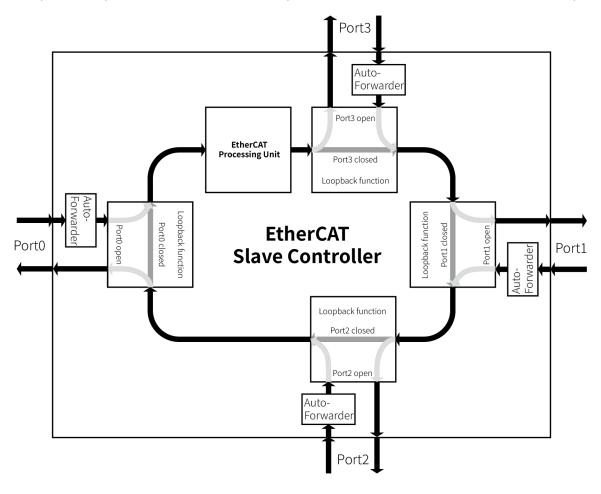


Figure 6-3 Frame processing sequence

6.2.4 ESC Register

Address	Length (byte)	Description	Status							
	ESC information									
0x0000	1	Туре	Υ							
0x0001	1	Revision	Υ							
0x0002:0x0003	2	Build	Υ							
0x0004	1	FMMUs Supported	Υ							
0x0005	1	SyncManagers supported	Υ							
0x0006	1	RAM Size	Υ							
0x0007	1	Port Descriptor	Υ							
0x0008:0x0009	2	ESC Features supported	Υ							
		Station address								
0x0010:0x0011	2	Configured Station Address	Υ							
0x0012:0x0013	2	Configured Station Alias	Υ							
		write-protect								
0x0020	1	Write Register Enable	Υ							
0x0021	1	Write Register Protection	Υ							
0x0030	1	ESC Write Enable	Υ							
0x0031	1	ESC Write Protection	Υ							
		Data link layer								
0x0040	1	ESC Reset ECAT	Υ							
0x0041	1	ESC Reset PDI	N							
0x0100:0x0101	2	ESC DL Control	Υ							
0x0102:0x0103	2	Extended ESC DL Control	Υ							
0x0108:0x0109	2	Physical Read/Write Offset	Υ							
0x0110:0x0111	2	ESC DL Status	Υ							
		Application layer								
0x0120	5 bits [4:0]	AL Control	Υ							
0x0120:0x0121	2	AL Control	Υ							
0x0130	5 bits [4:0]	AL Status	Υ							
0x0130:0x0131	2	AL Status	Υ							
0x0134:0x0135	2	AL Status Code	Υ							
0x0138	1	RUN LED Override	N							
0x0139	1	ERR LED Override	N							
		PDI (Process Data Interface)								
0x0140	1	PDI Control	Υ							
0x0141	1	ESC Configuration	Υ							
0x014E:0x014F	2	PDI Information	N							
0x0150	1	PDI Configuration	Υ							
0x0151	1	DC Sync/Latch Configuration	Υ							
0x0152:0x0153	2	Extended PDI Configuration	Υ							
		Interrupt								
0x0200:0x0201	2	ECAT Event Mask	Υ							
	1		<u> </u>							

0x0204:0x0207	4	PDI AL Event Mask	Y
0x0210:0x0211	2	ECAT Event Request	Y
0x0220:0x0223	4	AL Event Request	Υ
		Error counter	
0x0300:0x0307	4×2	Rx Error Counter[3:0]	Υ
0x0308:0x030B	4×1	Forwarded Rx Error counter [3:0]	Υ
0x030C	1	ECAT Processing Unit Error Counter	Y
0x030D	1	PDI Error Counter	Y
0x030E	1	PDI Error Code	N
0x0310:0x0313	4×1	Lost Link Counter[3:0]	Y
		Watchdog	
0x0400:0x0401	2	Watchdog Divider	Υ
0x0410:0x0411	2	Watchdog Time PDI	Υ
0x0420:0x0421	2	Watchdog Time Process Data	Υ
0x0440:0x0441	2	Watchdog Time Process data	Υ
0x0442	1	Watchdog Counter Process Data	Υ
0x0443	1	Watchdog Counter PDI	Υ
		EEPROM interface	
0x0500:0x050F	16	SII EEPROM Interface	Y
		MII management interface	·
0x0510:0x0515	6	MII Management Interface	Υ
0x0516:0x0517	2	MII Management Access State	N
0x0518:0x051B	4	PHY Port Status[3:0]	N
0x0600:0x06FC	16×13	FMMU[15:0]	8
0x0800:0x087F	16×8	SyncManager[15:0]	8
		Distributed clock,DC	
0x0900:0x090F	4×4	DC – Receive Times[3:0]	Υ
0x0918:0x091F	8	DC – Receive Time EPU	S/I
0x0920:0x0935	24	DC – Time Loop Control Unit	S/I
0x0910:0x0917	8	DC – System Time	S/I
0x0936	1	DC – Receive Time Latch mode	N
0x0980	1	DC – Cyclic Unit Control	S
0x0981	1	DC – Activation	S
0x0982:0x0983	2	DC – Pulse length of SyncSignals	S
0x0984	1	DC – Activation Status	N
0x098E:0x09A7	26	DC – SYNC Out Unit	S
0x09A8	1	DC – Latch0 Control	I
0x09A9	1	DC – Latch1 Control	I
0x09AE	1	DC – Latch0 Status	1
0x09B0:0x09B7	8	DC – Latch0 Positive Edge	1
0x09B8:0x09BF	8	DC – Latch0 Negative Edge	ı
0x09C0:0x09C7	8	DC – Latch1 Positive Edge	ı
0x09C7:0x09CF	8	DC – Latch1 Negative Edge	i

0x09F0:0x09F3 0x09F8:0x09FF	12	DC – SyncManager Event Times	S/I					
	ESC specific							
0x0E00:0x0E03	4	Power-On Values (Bits)	16bits					
0x0E00:0x0E07	8	Product ID	N					
0x0E08:0x0E0F	8	Vendor ID	N					
0x0E10	1	ESC Health Status	N					
		Digital I/O						
0x0F00:0x0F03	4	Digital I/O Output Data	Υ					
0x0F10:0x0F17	8	General Purpose Outputs [Byte]	2bytes					
0x0F18:0x0F1F	8	General Purpose Inputs [Byte]	2bytes					
		User RAM						
0x0F80:0x0FFF	128	User RAM	Υ					
		Process data RAM						
0x1000:0x1003	4	Digital I/O Input Data	Ю					
0x1000:0x1FFF		Process Data RAM [Kbyte]	4KB					

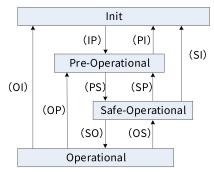
Note) : Y Support N Not support

S If 0x0140.10=1, it is valid If 0x0140.11=1, it is valid

S/I If 0x0140.10=1 and/or 0x0140.11=1,, it is valid

6.2.5 ESM(EtherCAT State Machine)

EtherCAT State Machine (ESM) coordinates the state relationship of master/slave stations during application initialization and runtime.


EtherCAT bus servo supports 4 states:

(1)Init: Initialization

(2)Pre-Operational: Pre-operational (PreOP)

(3) Safe-Operational: Safe operation, or SafeOP

(4)Operational: Operation, or OP Diagram of each state transition:

Switching of EtherCAT state machine must strictly follow the arrow direction in the above figure. When transitioning from initialization state to running state, it must be done in the order of "INIT \rightarrow PREOP \rightarrow SAFEOP \rightarrow OP" and can't be skipped. When returning from the running state, it's possible to bypass the path. All state changes are initiated by the master which sends a state control command to the slave and requests the new state. Slave station responds to this command, executes the requested state transition, and writes the result into the state indication register of slave station. If the requested state transition fails, the slave will give an error flag.

Table 6-6 Executable operations in each status Status and **Action** transition Master station can only read & write ESC registers, and the application layer has no Init communication Master station configures address register (ESC reg: 0x0010~0x0011) of slave station. If email communication is supported, configure mailbox channel parameters (SM channel). Init→PreOP If distributed clocks are supported, configure DC-related registers. Control register (ESC reg: 0x0120~0x0121) for master station write-status, requesting PreOP status Mailbox communication is activated. PreOP Process data communication is disabled The master uses mailbox initialization process data mapping; SM channel for process data communication configured by the master; PreOP→SafeOP The master configures FMMU. Control register (ESC reg: 0x0120~0x0121) for master station write-status, requesting SafeOP status The application layer supports mailbox data communication. Process data can be transmitted between master station and slave station, but the slave SafeOP doesn't update the data sent by the master, i.e., the slave doesn't respond to any command of the master. Master station sends valid output data; SafeOP→OP Control register (ESC reg: 0x0120~0x0121) for master station write-status, requesting OP status

	The application layer supports mailbox data communication.
OP	Process data communication (slave to master) is valid;
	Process data communication (master to slave) is valid

Table 6-7 Relationship between PDS status and ESM status

ESM status PDS status	Init	Preop	Safeop	OP
Not ready to switch on	Yes	No	No	No
Switch on disabled	Yes	Yes	Yes	Yes
Ready to switch on ^{*1)}	No	Yes	Yes	Yes
Switch on ^{*1)}	No	Yes	Yes	Yes
Operation enabled *2) *5)	No	Yes ^{*4)}	Yes ^{*4)}	Yes
Error reaction active	Yes	Yes	Yes	Yes
Error ^{*3)}	Yes	Yes	Yes	Yes

^{*1):} If ESM status is to receive the migration command from PreOP, SafeOP, OP to Init, PDS status is migrated to Switch on disabled.

6.2.6 SII(Slave Information Interface) EEPROM

6.2.6.1 EEPROM Data Layout

Table 6-8 EEPROM data layout

Word	+0h	+1h	+2h	+3h	+4h	+5h	+6h	+7h		
Address										
0000h	EtherCAT Slave Controller Configuration Area									
0008h	Vend	dorld	Produ	ctCode	Revis	ionNo	Seri	alNo		
0010h		Hardwa	re Delays			Bootstrap Ma	ailbox Config			
0018h		Mailbox Syn	c Man Config							
0020h										
		Reserved								
0030h										
0038h		Size Version								
			Additional I	nformation (Subdivided in	Categories)				
				Categor	y Strings					
0040h				Category	Generals					
		Category FMMU								
		Category SyncManager								
	Category Tx- / RxPDO for each PDO									

^{*2):} PDS status means that in Operation enabled status, if ESM status receives ESM migration command, PDS status is automatically enabled and PDS status is migrated to Switch on disabled.

^{*3):} Keep ESM state when PDS state is migrated to Error.

^{*4):} ESM status is to request PDS status to Operation enabled in OP status.

^{*5):} Because master station has requirements on ESM, it takes time to complete the state migration. Please pay attention to the timeout setting on master station.

6.2.6.2 SII Area (0000h to 003Fh)

ESC configuration data is stored in ESC-EEPROM character addresses 0x0000 to 0x0007. During the power-on and initialization of ESC, ESC automatically reads EEPROM data and writes the content of that storage area into the corresponding register of ESC.

Note: Please do not change the content of EEPROM storage area at will.

SII EEPROM		nt of EEPROM storage area at will.	ESC Register	Initial
Word Address	Name	Remarks	Word Address	value
0.0000	PDI Control/ ESC	Initial values of PDI control register	0140h	00001
0x0000h	Configuration	and ESC configuration register	0141h	0C08h
0.0001	DD1 C C .:	Initial value of PDI configuration	0150h	ccool
0x0001h	PDI Configuration	register	0151h	6608h
0.00001	Pulse Length of	Initial value of pulse length of	0982h	0154
0x0002h	SYNC Signals	synchronization signal	0983h	01F4h
0. 00021	Extended PDI	Extend the initial value of PDI	0152h	00001-
0x0003h	Configuration	configuration register	0153h	0000h
00004h	Configured Station	Initial value of station alias	0012h	00001-
0x0004h	Alias	configuration register	0013h	0000h
0x0005h	Reserved	Reserved, it should be 0	-	0000h
0x0006h	Reserved	Reserved, it should be 0	-	0000h
0x0007h	CheckSum	Character Address 0 to 6h checksum	-	00D2h
0x0008h	V 1 15			07FBh
0x0009h	Vendor ID	Manufacturer ID	-	0000h
0x000Ah	D 1 10 1	B 1		
0x000Bh	Product Code	Product code	-	-
0x000Ch	5	- · · · · ·		
0x000Dh	Revision Number	Revision No.	-	-
0x000Eh				
0x000Fh	Serial Number	Serial No.	-	-
0x0010h	Execution Delay	Execution delay	-	0000h
0x0011h	Port0 Delay	Port 0 delay	-	0000h
0x0012h	Port1 Delay	Port 1 delay	-	0000h
0x0013h	Reserved	Reserved	-	0000h
	Bootstrap Receive	Bootstrap status receiving Mailbox		
0x0014h	Mailbox Offset	offset (SM0, MbxOut, master → slave)	-	0000h
0.00151	Bootstrap Receive	Bootstrap status receiving Mailbox		00001
0x0015h	Mailbox Size	size (SM0, MbxOut, master → slave)	-	0000h
0.0016	Bootstrap Send	Bootstrap Status sending Mailbox		00001
0x0016h	Mailbox Offset	offset (SM1, MbxIn, slave → master)	-	0000h
0.00171	Bootstrap Send	Bootstrap Status sending Mailbox		00001
0x0017h	Mailbox Size	size (SM1, MbxIn, slave → master)	-	0000h
000101	Standard Receive	Standard status receiving Mailbox		1000
0x0018h	Mailbox Offset	offset (SM0, MbxOut, master → slave)	-	1000h
0.00101	Standard Receive	Standard status receving Mailbox size		00001
0x0019h	Mailbox Size	(SM0, MbxOut, master → slave)	-	0080h
0x001Ah	Standard Send	Standard status sending Mailbox	-	1400h

SII EEPROM Word Address	Name	Remarks	ESC Register Word Address	Initial value
	Mailbox Offset	offset (SM1, MbxIn, slave → master)		
0x001Bh	Standard Send Mailbox Size	Standard status sending Mailbox size (SM1, MbxIn, slave → master)	-	0080h
0x001Ch	Mailbox Protocol	Supported Mailbox protocol	-	0004h
0x001Dh 0x003Dh	Reserved	Reserved	-	-
0x003Eh	Size	EEPROM size	-	000Fh
0x003Fh	Version	edition	-	0001h
0040h 	Types of data			

6.2.7 Synchronization Mode

The servo supports DC_sync0 synchronization mode.

EtherCAT's distributed clock (DC) uses the DC clock of the first slave station as reference clock, and the master distributes the reference clock to all slave stations. When EtherCAT master station periodically sends an ARMW command to read the bus time stored in ESC register of the clock master, and writes this value into DC, the corresponding register of slave station to update local time. In order to ensure the accuracy of request, EtherCAT frame delay between slave stations must be additionally compensated. For each slave station, the time from sending to receiving a frame will be measured. Upon the bus topology, master station calculates the delay between slave stations and writes the corresponding delay compensation value into the register 0x928 in ESC.

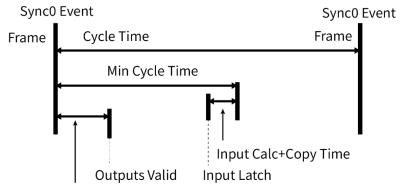


Figure 6-4 Sequence diagram of DC mode communication

6.2.8 MailBox Mailbox Structure

Mailbox mailbox frame structure is shown as below: For details, see ETG Specification (ETG1000-4).

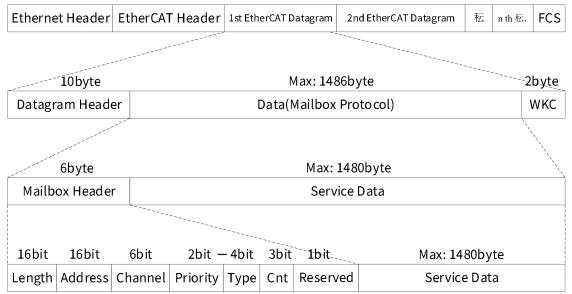


Figure 6-5 Mailbox frame structure

Table 6-9 EtherCAT mailbox codes

Frame part	Data area	Data type	Value/Description
	Length	WORD	Length of mailbox service data
			If the master station is a client, it's the source station
	Address	Address WORD	address; If the slave station is a client, it's the destination
			station address.
	Channel	Unsigned6	0x00(Reserved)
			0x00: The lowest priority
	Priority	Unsigned2	
			0x03: The highest priority
			0x00: Mailbox Error
			0x01: (Reserved)
		Unsigned4	0x02: EOE(Not supported)
Mailbox	Туре		0x03: COE
Header			0x04: FOE(Not supported)
riedaei			0x05: SOE(Not supported)
			0x06~0x0E: (Reserved)
			0x0F: Manufacturer Specific
			Mailbox service counter (0 is reserved, 1 is the starting
			value, and the value after 7 is 1). Slave station increments
			Cnt value for each new mailbox service, and master
	Cnt	Unsigned3	station should check that value to prevent mailbox
	CIIC	Onsigneds	service loss; Slave station should also check that value to
			find duplicate written services, while slave station should
			not check the sequence of Cnt values; Cnt values of the
			master and the slave are independent.
	Reserved	Unsigned1	0x00
Service Data	Service Data	OctetString[Length]	Mailbox service data

6.2.8.1 Mailbox Error

The service data responded by Mailbox Error is shown as below:

Table 6-10 Service data responded by Mailbox Error

Frame part	Data area	Data type Value/Description	
Mailbox		Chuta	
Header		6byte	
	Tuno	Uncianod16	0x01: MBXSERVICE_MBXERRORCMD
	Type	Unsigned16	Mail error command.
			0x01h: MBXERR_SYNTAX (Not Supported)
			Syntax error of 6byte mailbox header;
			0x02h: MBXERR_UNSUPPORTEDPROTOCOL
			Mailbox protocol is not supported.
			0x03h: MBXERR_INVALIDCHANNEL (Not Supported)
			Channel field contains the error value;
			0x04h: MBXERR_SERVICENOTSUPPORTED
			Services in the mailbox protocol are not supported.
Service			0x05h: MBXERR_INVALIDHEADER
Data	Detail	Detail Unsigned16	Mailbox protocol Header error (excluding 6 bytes of Mailbox
	Detail		Header);
			0x06h: MBXERR_SIZETOOSHORT
			Length of received mailbox data is too short;
			0x07h: MBXERR_NOMOREMEMORY
			Unable to provide sufficient memory for mailbox service due to
			resource constraints;
			0x08h: MBXERR_INVALIDSIZE
			Data length is inconsistent;
			0x09h: MBXERR_SERVICEINWORK (Not Supported)
			Mailbox service in process;

Note: The above table is the abstract description on Mailbox Error service. For details, see ETG1000-4. When Mailbox Error occurs, Mailbox Header. Type = 0x00

6.2.8.2 SDO(Service Data Object)

SV3 servo supports Service Data Objects (SDO):

Note) • When PDO modifies data, do not refresh the data by SDO

• SDO response may take some time.

For details, see ETG specifications (ETG1000-5 and ETG1000-6).

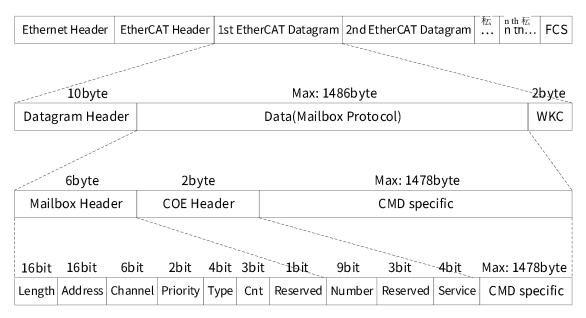


Figure 6-6 Mailbox/SDO frame structure

Table 6-11 COE mailbox codes

Frame	Data area	Data type Value/Description	
part		,,	
	Length	WORD	Length of mailbox service data
	A d d	WORR	If the master station is a client, it's the source station address; If
	Address	WORD	the slave station is a client, it's the destination station address.
	Channel	Unsigned6	0x00
			Priority
Mailbox	Priority	Unsigned2	0x00: The lowest priority
Header	Priority	Offsigned2	
			0x03: The highest priority
	Type	Unsigned4	0x03: COE
	Cnt	11	Mailbox service counter (0 is reserved, 1 is the starting value, and
	Cnt	Unsigned3	the value after 7 is 1)
	Reserved	Unsigned1	0x00
	Number	Unsigned9	Depend on COE service
	Reserved	Unsigned3	0x00
			0x01: Emergency
			0x02: SDO Request
COE			0x03: SDO Response
Header	Service	Unsigned4	0x04: TxPDO (Not Supported)
	Service	Unsigned4	0x05: RxPDO (Not Supported)
			0x06: TxPDO remote request (Not Supported)
			0x07: RxPDO remote request (Not Supported)
			0x08: SDO information
Cmd	Cmd Specific		
Specific	ciliu specilic		

Note: The above table is the abstract description on COE services. For details, see ETG1000-6. Supported services:

SDO Download Expedited SDO Download Normal Download SDO Segment SDO Upload Expedited SDO Upload Normal Upload SDO Segment Abort SDO Transfer Abort Message

When SDO data exchange processing (Read or Write) fails, Abort Message is returned, which is specified by Abort Code as the error message indicating the reason for SDO termination.

Table 6-12 Abort Message

Table 6-12 Abort Message			
Value		aning	
0x05030000	Toggle bit not changed	Toggle bit no change	
0x05040000(Not Supported)	SDO protocol timeout	SDO protocol timeout	
0x05040001	Client/Server command specifier not valid	The client/server command qualifier is	
0X03040001	or unknown	invalid or unknown	
0x05040005	Out of memory	Memory overflow	
0x06010000	Unsupported access to an object	Unsupported object access	
0x06010001	Attempt to read to a write only object	Attempt to read a write-only object	
0x06010002	Attempt to write to a read only object	Attempt to write to a read-only object	
0,,00010002	Entry can not be written because Subindex0	Unable to write into sub-index because	
0x06010003	is not 0	Subindex 0 is not 0	
0x06010004	The object can not be accessed via complete	The specified object can't be accessed in the	
(Not Supported)	access	full access method	
0,,060,200,00	Object not existing	That object does not exist in the object	
0x06020000	Object not existing	directory	
0x06040041	Object can not be manned to DDO	That abject cannot be manned to DDO	
(Not Supported)	Object can not be mapped to PDO	That object cannot be mapped to PDO	
0x06040042	The number and length of the objects to be	The number and length of mapped objects	
(Not Supported)	mapped would exceed the PDO length	will exceed PDO length	
0x06040043	General parameter incompatibility reason	General parameters are not compatible	
(Not Supported)	General parameter incompatibility reason	General parameters are not compatible	
0x06040047	General internal incompatibility in the	The device has general internal	
(Not Supported)	device	incompatibility	
0x06060000	Access failed due to a hardware error	Access failed due to a hardware error	
(Not Supported)	Access failed due to a flatdware effor	Access failed due to a flaidware effor	
0x06070010	Data type does not match,length of service	The data type is inconsistent, and the length	
000070010	parameter does not match	of service parameter are inconsistent	
0x06070012	Data type does not match,length of service	The data type is inconsistent, and the length	
(Not Supported)	parameter too high	of service parameter is too long	
0x06070013	Data type does not match,length of service	The data type is inconsistent, and the length	
(Not Supported)	parameter too low	of service parameter is too short	
0x06090011	Subindex does not exist	Subindex does not exist	
0x06090030	Value range of parameter exceeded (only for	Parameter value out of range (for write	
0.00030030	write access)	access only)	
0x06090031	Value of parameter written too great	Value of the parameter written is too large	

0x06090032 (Not Supported)	Value of parameter written too small	Value of the parameter written is too small
0x06090036 (Not Supported)	Maximum value is less than minimum value	The maximum is less than the minimum
0x08000000 (Not Supported)	General error	General alarm
0x08000020	Data cannot be transferred or stored the application	Data can't be transferred or stored to the application layer
0x08000021	Data cannot be transferred or stored to the application because of local control	Data can't be transferred/stored to the application layer due to local control
0x08000022	Data cannot be transferred or stored to the application because of the present device state	Due to current device state, data can't be transferred/stored to the application layer
0x08000023	Object dictionary dynamic generation fails or no object dictionary is present	Object dictionary fails to be dynamically generated or does not exist

6.2.8.3 SDO Information

Table 6-13 COE-SDO Information Service data

Frame part	Data area	Data type	Value/Description	
Frame part			· •	
	Length	WORD	n>0x06: Length of mailbox service data	
	Address	WORD	If the master station is a client, it's the source station address; If	
			the slave station is a client, it's the destination station address.	
	Channel	Unsigned6	0x00	
			priority	
Mailbox	Dui suits.	11	0x00: The lowest priority	
Header	Priority	Unsigned2		
			0x03: The highest priority	
	Туре	Unsigned4	0x03: COE	
			Mailbox service counter (0 is reserved, 1 is the starting value,	
	Cnt	Unsigned3	and the value after 7 is 1)	
	Reserved	Unsigned1	0x00	
	Number	Unsigned9	0x00	
COFILE		- J		
COE Header	Reserved	Unsigned3	0x00	
	Service	Unsigned4	0x08: SDO information	
			0x01: Get OD List request	
			0x02: Get OD List response(Not Supported)	
			0x03: Get Object Description request	
	Opcode	Unsigned7	0x04: Get Object Description response(Not Supported)	
SDO Info			0x05: Get Entry Description request	
Header			0x06: Get Entry Description response(Not Supported)	
	Incomplete	Unsigned1		
	•			
	Incomplete Reserved Fragments	Unsigned1 Unsigned8 WORD	0x07: SDO Info Error(Not Supported) Whether it is the last SDO Information segment(Not Supported) 0x00 Number of subsequent segments	

Frame part	Data area	Data type	Value/Description
	Left		
SDO Info Service Data	Data		SDO Information service data

Note: The above table is the abstract description on SDO Information service, see ETG1000-6 for details

The following services are supported:

Get OD List

OD List Segment

Get Object Description

Get Entry Description

Entry Description Segment

Emergency

Emergency Message

When servo operation Error occurs, the servo actively sends an emergency frame to notify operation controller of the servo Error.

Emergency Message can occur only in Non-Init state.

When Emergency Message occurs, object 0x603F is set of the corresponding Error code.

Table 6-14 COE-SDO Emergency service data

Table 0 14 COL 3D0 Ellicigency service data			
Frame part	Data area	Data type	Value/Description
Mailbox Header		6byte	
	Number	Unsigned9	0x00
COE Header	Reserved	Unsigned3	0x00
	Service	Unsigned4	0x01: SDO emergency
	Error Code	WORD	Error code
Emergency	Error Register	Byte	Error register
	Data	Byte[5]	Diagnostic data
	Reserved		

Note: The above table is the abstract description on SDO Information service, see ETG1000-6 for details

Table 6-15 Diagnostic Data[0]

Table 0-13 Diagnostic Data[0]				
Data [0]	Data [1~4]	Meaning		
0x00+channel*4	Sync Manager Address Error(address is odd)	Address of synchronization manager channel is odd		
0x01+channel*4	Sync Manager Address Error(address invalid)	Address of synchronization manager channel is invalid		
0x02+channel*4	Sync Manager Length Error	Length of synchronization manager channel is invalid		
0x03+channel*4	Sync Manager Setting Error	Setting of synchronization manager channel is invalid		

Table 6-16 Sync Manager address error: Diagnostic Data [1-4]

Tuble of to Synte Manager address error. Blaghostic Bata [1 1]			
Data [1~4]	Data type	Value/Description	
Minimum Address	WORD	Min. value of the physical start address of	
Millimulli Address	WORD	synchronization manager channel	
Mariano na Addus as	WORD	Max.value of the physical start address of	
Maximum Address	WORD	synchronization manager channel	

Table 6-17 Error of Sync Manager Length: Diagnostic Data [1~4]

Data [1~4]	Data type	Value/Description
Minimum Length	WORD	Min. value for the length of sync manager channel
Maximum Length	WORD	Max. value for the length of sync manager channel

Table 6-18 Error of Sync Manager Settings: Diagnostic Data[1-4]

Data [1~4]	Data type	Value/Description
0x02 + channel *4	WORD	0x02 + channel *4
0x0001	WORD	Sync Manager setting enable value

²⁾ Servo operation error

Error code is the same as Object 0x603F.

SDO Emergency is used as follows:

Error code: the same as Object 0x603F

Error register: the corresponding error register

Table 6-19 Diagnostic Data[0~4]

Data	Numerical value	Data type	Value/Description
[0]	(err_code-0xFF00)&0xFF	Byte	That's err in the table
[1~2]	error data[0]+0x320	WORD	Panel display data
[3~4]	0	WORD	Forced to be 0

6.2.8.4 Processing Capability

The servo has the cache for the received mailbox data. Max. cache number is 4 pieces of mailbox data. If master station continuously sends over 4 pieces of mailbox data, the subsequent data 3will not be received temporarily. Only when the cache is free, can it continue to receive subsequent mailbox data.

Therefore, in the case of not processing mailbox feedback data, it is recommended that number of consecutive mailbox messages sent by master station should not exceed 4.

6.2.9 PDO(Process Data Object)

EtherCAT bus servo supports Process Data Object (PDO) and can be configured online. Real-time data transmission based on EtherCAT is exchanged by PDO. PDO has RxPDO for transmitting data from master station to slave station and has TxPDO for transmitting data from slave station to master station.

RxPDO	≤68byte: Number of allocated objects is 1; Number of mapped application objects ≤20
TxPDO	≤68byte: Number of allocated objects is 1; Number of mapped application objects ≤20

SV3 servo supports PDO online dynamic mapping.

Dynamic mapping can be performed in 2 steps: allocating objects and mapping objects.

6.2.9.1 PDO allocates objects

SV3 servo must allocate objects to SyncManager PDO, 0x1C12 used for RxPDO(SyncManager2) and 0x1C13 used for TxPDO(SyncManager2).

Table 6-20 RxPDO allocation objects

Index	Sub	DeError Value	Remarks
1C12h	00h	01h	Only one object can be configured
	01h	1600h	1600h/1601h/1602h/1603h one out of four
			1600h/1601h/1602h/1603h are mutually exclusive

Table 6-21 TxPDO allocation objects

Index	Sub	DeError Value	Remarks
1C13h	00h	01h	Only one object can be configured
	01h	1A00h	1A00h/1A01h/1A02h/1A03h one out of four
			1A00h/1A01h/1A02h/1A03h are mutually exclusive

Configuration case: < Take 1C12h configured of 1603h for example>

1) Switch ESM status into PreOP;

Activate mailbox communication and configure 1C12h by SDO.

2) Set 1C12h-00h of 0 by SDO;

Value of 1C12h-01h can be changed only after 1C12h-00h is set of 0.

3) Set 1C12h-01h of 1603h by SDO;

Set the specific allocation object

4) Set 1C12h-00h of 1 by SDO;

Activate the setting of 1C12h.

5) Switch ESM status into SafeOP;

Activate TxPDO.

6) Switch ESM status into OP.

Activate RxPDO.

6.2.9.2 PDO Mapping Objects

The mapping objects used for RxPDO can be 1600h/1601h/1602h/1603h. The mapping objects used for TxPDO can be 1A00h/1A01h/1A02h/1A03h.

Table 6-22 Mapping object 1600h

Index	Sub	DeError Value	Remarks
	00h	07h	Max. 20
	01h	60400010h	1 st receive PDO mapped
	02h	607A0020h	2 nd receive PDO mapped
1600h	03h	60FF0020h	3 rd receive PDO mapped
	04h	60710010h	4 th receive PDO mapped
	05h	60600008h	5 th receive PDO mapped
	06h	5FFE0008h	6 th receive PDO mapped

07h	60B80010h	7 th receive PDO mapped
08h	0000000h	8 th receive PDO mapped
•••	•••	
14h	00000000h	20 th receive PDO mapped

Other, omit.

Configuration case: < Take 1600h-08h configured of 606Eh for example.

1) Switch ESM status into PreOP;

Activate mailbox communication and configure 1600h by SDO.

2) Set 1600h-00h of 0 by SDO;

It must set 1600h-00h of 0 first, then value of 1600h-08h can be changed.

3) Set 1600h-08h of 606E0010h by SDO;

Set the specific mapping object

4) Set 1600h-00h of 8 by SDO;

Activate 1600h setting.

5) Switch ESM status into SafeOP;

Activate TxPDO.

6) Switch ESM status into OP.

Activate RxPDO.

Chapter 7 Object Dictionary

7.1 Allocation List of Object Group 1000h

Table 7-1 List of 1000h object group

	Table 7-1 List of 1000h object group											
Index	Subin dex	Name	Acces sibilit y	PDO mappin g	Data type	Unit	Data range	Factory setting				
1000	0	Drive type	RO	NO	UINT32	-	1	0x00020192				
1008	0	Drive name	RO	NO	-	-	ı	SV3H-ECAT				
1009	0	Hardware version	RO	NO	-	-	-	Depends on the software version				
100A	0	Software version	RO	NO	-	-	-	Depends on the hardware version				
	ID object											
1018	Max. subindex number included by ID object		RO	NO	UINT8	-	-	04 hex				
	1	Supplier ID	RO	NO	UINT32	-	-	0010 0000 hex				
	2	Product code	RO	NO	UINT32	-	-	0x000C0108				
	3	Revision No.	RO	NO	UINT32	-	-	0x00010001				
			N	/anufacture	er's software v	ersion						
	0	Max. subindex number of synchronous management communicatio n type	RO	NO	UINT8	-	,	04 hex				
1C00	1	SM0 communicatio n type	RO	NO	UINT8	-	1	01hex				
	2	SM1 communicatio n type	RO	NO	UINT8	-	-	02hex				
	3	SM2		NO	UINT8	-	-	03hex				
	4	SM3 communicatio n type	RO	NO	UINT8	-	-	04hex				

Index	Subin dex	Name	Acces sibilit y	PDO mappin g	Data type	Unit	Data range	Factory setting
					lapping object	1st		
		RxPDO1						
		Number of						
	0	supported	RW	NO	UINT8	-	0~10	3
		mapping						
		objects						
		The first					0~429496	
	1	mapping	RW	NO	UINT32	-	7295	6040 0010
		object						
		The second					0~429496	
	2	mapping	RW	NO	UINT32	-	7295	607A 0020
		object						
		The third	DW		LUNT22		0~429496	5000.0010
	3	mapping	RW	NO	UINT32	-	7295	60B8 0010
		object						
		The fourth	DW	l No	LUNTOO		0~429496	
	4	mapping	RW	NO	UINT32	-	7295	-
1600		object						
	5	The fifth	RW	NO	UINT32		0~429496	
)	mapping object	RVV	I NO	UIN I 32	-	7295	-
		The sixth						
	6	mapping	RW	NO	UINT32	_	0~429496	_
		object	IXVV	l NO	0111132		7295	-
		The seventh						
	7	mapping	RW	NO	UINT32	_	0~429496	-
		object		"	0.111.02		7295	
		The eighth						
	8	mapping	RW	NO	UINT32	_	0~429496	-
		object					7295	
		The ninth						
	9	mapping	RW	NO	UINT32	_	0~429496	-
		object					7295	
		The tenth						
	0A	mapping	RW	NO	UINT32	-	0~429496	-
		object					7295	
				RxPDO1 Ma	apping object 2	258th		
		RxPDO1						
1701		Number of						
1,01	0	supported	RO	NO	UINT8	-	-	04hex
		mapping						
		objects						

Index	Subin dex	Name	Acces sibilit y	PDO mappin g	Data type	Unit	Data range	Factory setting		
	1	The first mapping object	RO	NO	UINT32	-	-	6040 0010		
	2	The second mapping object	RO	NO	UINT32	-	-	607A 0020		
	The third mapping object		RO	NO	UINT32	-	-	60B8 0010		
	4	The fourth mapping object	RO	NO	UINT32	-	-	60FE 0120		
				RxPDO1 Ma	apping object 2	259th				
	0	RxPDO259 Number of supported mapping objects	RO	NO	UINT8	-	-	07 hex		
	1	The first mapping object	RO	NO	UINT32	-	-	6040 0010		
	2	The second mapping object		NO	UINT32	-	-	607A 0020		
1702	3	The third mapping object	RO	NO	UINT32	-	-	60FF 0020		
	4	The fourth mapping object	RO	NO	UINT32	-	-	6071 0010		
	5	The fifth mapping object	RO	NO	UINT32	-	-	6060 0008		
	6	The sixth mapping object	RO	NO	UINT32	-	-	60B8 0010		
	7	The seventh mapping object		NO	UINT32	-	-	607F0020		
	RxPDO1 Mapping object 260th									
1703	0	RxPDO260 Number of	RO	NO	UINT8	-	-	07 hex		

	Cubin		Acces	PDO			Data						
Index	Subin dex	Name	sibilit	mappin	Data type	Unit	Data range	Factory setting					
		supported	У	g									
		mapping											
		objects											
		The first											
	1	mapping	RO	NO	UINT32	_	_	6040 0010					
	-	object	"	140	0111132			0040 0010					
		The second											
	2	mapping	RO	NO	UINT32	_	-	607A 0020					
		object											
		The third											
	3	mapping	RO	NO	UINT32	-	-	60FF 0020					
		object											
		The fourth			UINT32								
	4	mapping	RO	NO		-	-	6060 0008					
		object											
		The fifth											
	5	mapping	RO	NO	UINT32	-	-	60B8 0010					
		object											
		The sixth											
	6	mapping	RO	NO	UINT32	-	-	60E0 0010					
		object											
		The seventh											
	7	mapping	RO	NO	UINT32	-	-	60E1 0010					
	object RxPDO1 Mapping object 261st												
		RxPDO261											
	0	Number of	D0	NO	LUNTO			00 h					
	0	supported	RO	NO	UINT8	-	-	09 hex					
		mapping											
		objects											
	1	The first	RO	NO	UINT32			6040 0010					
	1	mapping object	I RO	INO	UINTSZ	-	-	6040 0010					
1704		The second											
	2	mapping	RO	NO	UINT32	_	_	607A 0020					
	-	object	l Ko	110	0111132			0017(0020					
		The third											
	3	mapping	RO	NO	UINT32	_	_	60FF 0020					
		object			- · · · · · · · · · ·								
		The fourth											
	4	mapping	RO	NO	UINT32	-	-	6071 0010					
		object											

Index	Subin dex	Name	Acces sibilit y	PDO mappin g	Data type	Unit	Data range	Factory setting			
	5	The fifth mapping object	RO	NO	UINT32	-	-	6060 0008			
	6	The sixth mapping object	RO	NO	UINT32	-	-	60B8 0010			
	7	The seventh mapping object	RO	NO	UINT32	-	-	607F0020			
	8	The eighth mapping object	RO	NO	UINT32	-	-	60E0 0010			
	9	The ninth mapping object	inth oing RO NO UINT32		60E1 0010						
	RxPDO1 Mapping object 262nd										
	0	RxPDO262 Number of supported mapping objects	RO	NO	UINT8	-	-	08hex			
	1	The first mapping object	RO	NO	UINT32	-	-	6040 0010			
	2	The second mapping object	RO	NO	UINT32	-	-	607A 0020			
1705	3	The third mapping object	RO	NO	UINT32	-	-	60FF 0020			
	4	The fourth mapping object	RO	NO	UINT32	-	-	6060 0008			
	5	The fifth mapping object	RO	NO	UINT32	-	-	60B8 0010			
	6	The sixth		UINT32	-	-	60E0 0010				
	7	The seventh mapping object	RO	NO	UINT32	-	-	60E1 0010			

Index	Subin dex	Name	Acces sibilit y	PDO mappin g	Data type	Unit	Data range	Factory setting			
	8	The eighth mapping object	RO	NO	UINT32	-	-	60B2 0010			
				TxPDO1 M	lapping object	1st					
	0	TxPDO1 Number of supported mapping objects	RW	NO	UINT8	-	0~10	7			
	1	The first mapping object	RW	NO	UINT32	-	0~429496 7295	6041 0010			
	2	The second mapping object	RW	NO	UINT32	-	0~429496 7295	6064 0020			
	3	The third mapping object	RW	NO	UINT32	-	0~429496 7295	60B9 0010			
1A00	4	The fourth mapping object	RW	NO	UINT32	-	0~429496 7295	60BA 0020			
IAUU	5	The fifth mapping object			-	0~429496 7295	60BC0020				
	6	The sixth mapping object	RW	NO	UINT32	-	0~429496 7295	603F0010			
	7	The seventh mapping object	RW	NO	UINT32	-	0~429496 7295	60FD0020			
	8	The eighth mapping object	RW	NO	UINT32	-	0~429496 7295	-			
	9	The ninth mapping object	RW	NO	UINT32	-	0~429496 7295	-			
	0A	The tenth mapping object	RW	NO	UINT32	-	0~429496 7295	-			
	TxPDO258 Mapping object										
1B01	0	TxPDO258 Number of	RO	NO	UINT8	-	-	8			

Index	Subin dex	Name	Acces sibilit y	PDO mappin g	Data type	Unit	Data range	Factory setting	
		supported							
		mapping							
		objects							
		The first							
	1	mapping	RO	NO	UINT32	-	-	603F0010	
		object							
		The second			LUNTOO			5041.0010	
	2	mapping	RO	NO	UINT32	-	-	6041 0010	
		object							
	3	The third	RO	NO	UINT32	_		6064 0020	
	3	mapping object	RO	I NO		-	-	6064 0020	
		The fourth							
	4	mapping	RO	NO	UINT32	_	_	6077 0010	
		object	l KO	l NO	OINTSZ		_	0077 0010	
		The fifth							
	5	mapping	RO	NO	UINT32	_	_	60F40020	
		object		""	0111102			301 10020	
		The sixth							
	6	mapping	RO	NO	UINT32	_	-	60B90010	
		object							
		The seventh							
	7	mapping	RO	NO	UINT32	-	-	60BA0020	
		object							
		The eighth							
	8	mapping	RO	NO	UINT32	-	-	60FD0020	
		object							
				TxPDO25	9 Mapping obj	ect			
		TxPDO259							
		Number of							
	0	supported	RO	NO	UINT8	-	-	9	
		mapping							
		objects							
		The first							
1B02	1	mapping	RO	NO	UINT32	-	-	603F0010	
		object							
		The second							
	2	mapping	RO	NO	UINT32	-	-	6041 0010	
		object							
		The third	5.0						
	3	mapping	RO	NO	UINT32	-	-	6064 0020	
		object				<u> </u>			

Index	Subin dex	Name	Acces sibilit y	PDO mappin g	Data type	Unit	Data range	Factory setting
	4	The fourth mapping object	RO	NO	UINT32	-	-	6077 0010
	5	The fifth mapping object	RO	NO	UINT32	-	-	6061 0008
	6	The sixth mapping object	RO	NO	UINT32	-	-	60B9 0010
	7	The seventh mapping object	RO	NO	UINT32	-	-	60BA 0020
	8	The eighth mapping object	RO	NO	UINT32	-	-	60BC0020
	9	The ninth mapping object	RO NO		UINT32	-	-	60FD0020
			•	TxPDO26	0 Mapping obj	ect		
	0	TxPDO260 Number of supported mapping objects	RO	NO	UINT8	-	-	10
	1	The first mapping object	RO	NO	UINT32	-	-	603F0010
1002	2	The second mapping object	RO	NO	UINT32	-	-	6041 0010
1B03	3	The third mapping object	RO	NO	UINT32	-	-	6064 0020
	4	The fourth mapping object	RO	NO	UINT32	-	-	6077 0010
	5	The fifth mapping object	RO	NO	UINT32	-	-	60F4 0020
	6	The sixth mapping object	RO	NO	UINT32	-	-	6061 0008

Index	Subin dex	Name	Acces sibilit y	PDO mappin g	Data type	Unit	Data range	Factory setting					
	7	The seventh mapping object	RO	NO	UINT32	-	-	60B9 0010					
	8	The eighth mapping object	RO	NO	UINT32	-	1	60BA 0020					
	9	The ninth mapping object	RO	NO	UINT32	-	1	60BC0020					
	0A	The tenth mapping object	RO	NO	UINT32	-	-	60FD0020					
		TxPDO261 Mapping object											
	0	TxPDO261 Number of supported mapping objects	RO	NO	UINT8	-	-	10					
	1	The first mapping object	RO	NO	UINT32	-	-	603F0010					
	2	The second mapping object	RO	NO	UINT32	-	-	6041 0010					
1004	3	The third mapping object	RO	NO	UINT32	-	1	6064 0020					
1B04	4	The fourth mapping object	RO	NO	UINT32	-	ı	6077 0010					
	5	The fifth mapping object	RO	NO	UINT32	-	-	6061 0008					
	6	The sixth mapping object	RO	NO	UINT32	-	-	60F4 0020					
	7	The seventh mapping object	RO	RO NO UINT32		-	-	60B9 0010					
	8	The eighth mapping object	RO	NO	UINT32	-	-	60BA 0020					

Index	Subin dex	Name	Acces sibilit y	PDO mappin g	Data type	Unit	Data range	Factory setting			
	9	The ninth mapping object	RO	NO	UINT32	-	-	60BC0020			
	0A	The tenth mapping object	RO	ОО	UINT32	-	-	606C0020			
			Sync management 2_ RxPDO allocation								
1C12	Sync management 2_RxPDO allocation Max. subindex No.		RW	NO	UINT8	-	0~1	1			
	1	Index of RxPDO allocation objects	RW	YES	UINT16	-	0~65535	0x1701			
	Sync management 2_TxPDO allocation		RW	NO	UINTER16	-	OD data range	OD deError value			
1C13	0	Sync management 2_TxPDO allocation Max. subindex No.	RW	NO	UINT8	-	0~1	1			
	1	Index of TxPDO allocation objects	RW	YES	UINT16	-	0~65535	0x1B01			
		Sy	nc mana	gement 2 S	ynchronize ou	tput para	meters				
1C32	0	Sync management 2 Maximum sub-index number of synchronizatio n parameters	RO	NO	UINT8	-	-	0x20			
	1	Synchronizati on type	Synchronizati RO NO		UINT16	-	-	0x0002			
	2	Cycle time	RO	NO	UINT32	ns	-	0			
	4	Supported synchronizatio	RO	NO	UINT16	-	-	0x0004			

Index	Subin dex	Name	Acces sibilit y	PDO mappin g	Data type	Unit	Data range	Factory setting
		n types						
	5	Min. cycle time	RO	NO	UINT32	ns	-	0x0001E848
	6	Calculate and copy time	RO	NO	UINT32	ns	-	-
	9	Delay time	RO	NO	UINT32	ns	-	-
	20	Sync error	RO	NO	BOOL	-	-	-
		S	ync man	agement 2 S	Synchronize in	put paran	neters	
	0	Sync management 2 Maximum sub-index number of synchronizatio n parameters	RO	NO	UINT8	-	-	0x20
1C33	1	Synchronizati on type	RO	NO	UINT16		-	0x0002
	2	Cycle time	RO	NO	UINT32	ns	ı	0
	4	Supported synchronizatio n types	RO	NO	UINT16	-	-	0x0004
	5	Min. cycle time	RO	NO	UINT32	ns	-	0x0001E848
	6	Calculate and copy time	RO	NO	UINT32	ns	-	-
	9	Delay time	RO	NO	UINT32	ns	-	-
	20	Sync error	RO	NO	BOOL	-	-	-

7.2 Allocation List of Object Groups 2000h

Table 7-2 List of 2000h object group

Table 7-2 List of 2000h object group										
	Subi	_					Factor		Enab	
Inde	nde	Parame	Name	Propert	Unit	Range	У	Setting	le	
X	х	ter		У			deErro	mode	mod	
				2000 Mata			r		е	
				2000 MOLC	or paramete	ers			lua na a	
2000	04h	P0003	Motor	RW		0~65535	0	Stop	Imme diate	
2000	0411	P0003	property	KVV	-	0.65555		change	effect	
						0:220V			Powe	
2000	0Bh	P0010	Rated voltage	RW	V	0.2201	0	Stop	r-on	
			of motor		-	1:380V		change	reset	
								_	Powe	
2000	0Ch	P0011	Rated current	RW	0.01A	0~65535	100	Stop	r-on	
			of motor					change	reset	
			Rated power					Stop	Powe	
2000	0Dh	P0012	of motor	RW	0.01kW	0~65535	75	change	r-on	
			or motor					change	reset	
			_					Stop	Powe	
2000	0Eh	P0013	Rated torque	RW	0.01Nm	0~4294967295	239	change	r-on	
									reset	
2000	12h	P0017	Rated speed	RW	rnm	0~65535	3000	Stop	Powe r-on	
2000	1211	P0017	Rateu speeu	KVV	rpm	0.65555	3000	change	reset	
				2001 Encod	ler parame	l ters			reset	
			Encoder						Powe	
2001	01h	P0100	communicatio	RW	-	0~65535	11233	Stop	r-on	
			n protocol					change	reset	
			Encoder						Imme	
2001	04h	P0103	version No.	RO	-	0~65535	0	Display	diate	
			version no.						effect	
			Encoder wire				104857	Stop	Powe	
2001	06h	P0105	count	RW	-	0~4294967295	6	change	r-on	
					_				reset	
				2002 Driv	e Paramete	ers				
2002	016	DOSOO	MCU software	DO.		0.65525		Dioplas	Imme	
2002	01h	P0200	version No.	RO	-	0~65535	0	Display	diate effect	
									Imme	
2002	02h	P0201	FPGA software	RO	_	0~65535	0	Display	diate	
2002	0211	1 0201	version No.			0 00000		Display	effect	
			MCU				_		Imme	
2002	03h	P0202	non-standard	RO	-	0~4294967295	0	Display	diate	

Inde x	Subi nde x	Parame ter	Name	Propert y	Unit	Range	Factor y deErro r	Setting mode	Enab le mod e
			No.						effect
2002	05h	P0204	FPGA non-standard No.	RO	-	0~4294967295	0	Display	Imme diate effect
2002	0Dh	P0212	Drive input voltage	RO	-	0~65535	220	Display	Imme diate effect
2002	0Eh	P0213	Drive rated power	RO	0.01kW	1~65535	75	Display	Imme diate effect
2002	10h	P0215	Drive rated current	RO	0.01A	1~65535	550	Display	Imme diate effect
2002	23h	P0234	Regenerative resistance selection	RW	-	0: Built-in regenerative resistor 1: External regenerative resistance, natural cooling 2: external regenerative resistance, forced air cooling 3: No regenerative resistance	0	Stop change	Imme diate effect
2002	24h	P0235	Heat radiation coefficient of regenerative resistance	RW	-	10~100	30	Stop change	Imme diate effect
2002	25h	P0236	Built-in regenerative resistor power	RO	W	1~65535	40	Display	Imme diate effect
2002	26h	P0237	Built-in regenerative resistance	RO	Ω	1~1000	50	Display	Imme diate effect
2002	27h	P0238	Min. external regenerative resistance	RO	Ω	1~1000	40	Display	Imme diate effect

Inde x	Subi nde x	Parame ter	Name	Propert y	Unit	Range	Factor y deErro r	Setting mode	Enab le mod e
2002	28h	P0239	External regenerated resistor power	RW	W	1~65535	40	Stop change	Imme diate effect
2002	29h	P0240	External regenerative resistance	RW	Ω	1~1000	50	Stop change	Imme diate effect
				2003 IO	Parameters	5			
2003	01h	P0300	DI1 function	RW		0: no definition 1: Servo enabled 2: Emergency shutdown 3: Command forbidden 4: Position deviation cleared 5: Reset the Error 6: Zero speed retention 7: Forward jogging 8: Reverse jogging 9: Forwar limit 10: Reverse limit 11: Origin switch 12: Zero to return enabled 13: Speed limit selection 14: Forward torque limit selection 15: Reverse torque limit selection 16: Preset	9	Stop	Imme diate effect

Inde x	Subi nde x	Parame ter	Name	Propert y	Unit	Range	Factor y deErro r	Setting mode	Enab le mod e
						position			-
						enabled			
						19: Torque			
						instruction			
						reversing			
						20: Speed			
						instruction			
						reversing			
						switch			
						21: Position			
						command			
						reversing			
						switch			
						22: Gain switch			
						selection			
						23: Operation			
						command			
						switch			
						24: Mode			
						switch 1			
						25: Mode			
						switch 2			
						26: Electronic			
						gear switch			
						27: Preset			
						command			
						selection 1			
						28: Preset			
						command			
						selection 2			
						29: Preset			
						command			
						selection 3			
						30: Preset			
						command			
						selection 4			
						31: Current DI			
						trigger point as			
						the origin			
						33: Probe 1			
						34: Probe 2			

Inde x	Subi nde x	Parame ter	Name	Propert y	Unit	Range	Factor y deErro r	Setting mode	Enab le mod e
2003	02h	P0301	DI1 Polarity	RW	-	0: Normally open 1: Normally close	0	Stop change	Imme diate effect
2003	03h	P0302	DI2 function	RW	1	Refer to DI1 function	10	Stop change	Imme diate effect
2003	04h	P0303	DI2 polarity	RW	-	0: Normally open 1: Normally close	0	Stop change	Imme diate effect
2003	05h	P0304	DI3 function	RW	-	Refer to DI1 function	11	Stop change	Imme diate effect
2003	06h	P0305	DI3 polarity	RW	-	0: Normally open 1: Normally close	0	Stop change	Imme diate effect
2003	07h	P0306	DI4 function	RW	-	Refer to DI1 function	0	Stop change	Imme diate effect
2003	08h	P0307	DI4 polarity	RW	-	0: Normally open 1: Normally close	0	Stop change	Imme diate effect
2003	09h	P0308	DI5 function	RW	-	Refer to DI1 function	0	Stop change	Imme diate effect
2003	0Ah	P0309	DI5 polarity	RW	-	0: Normally open 1: Normally close	0	Stop change	Imme diate effect
2003	13h	P0318	Initial effect DI function 1	RW	-	0: no definition 1: Servo enabled 2: Emergency shutdown 3: Command forbidden 4: Position deviation	0	Stop change	Powe r-on reset

Inde x	Subi nde x	Parame ter	Name	Propert y	Unit	Range	Factor y deErro r	Setting mode	Enab le mod e
						cleared			
						5: Reset the			
						Error			
						6: Zero lock			
						7: Forward			
						jogging			
						8: Reverse			
						jogging			
						9: Forwar limit			
						10: Reverse			
						limit			
						11: Origin			
						switch			
						12: Zero to			
						return enabled			
						13: Speed limit			
					selection				
						14: Forward			
						torque limit			
						selection			
						15: Reverse			
						torque limit			
						selection			
						16: Preset			
						position			
						enabled			
						0: no definition			
						19: Torque			
						instruction			
						reversing			
						20: Speed			
						instruction			
						reversing		_	Powe
2003	14h P0319 Initial effect D function 2		RW	-	switch	0	Stop	r-on	
		function 2			21: Position		change	reset	
					command				
						reversing			
						switch			
					22: Gain switch				
						selection			
						23: Speed			

Inde x	Subi nde x	Parame ter	Name	Propert y	Unit	Range	Factor y deErro r	Setting mode	Enab le mod e
						command source switch			
						24: Mode			
						switch 1			
						25: Mode			
						switch 2			
						26: Electronic			
						gear switch			
						27: Preset			
						command			
						selection 1			
						28: Preset			
						command			
						selection 2			
						29: Preset			
						command			
						selection 3			
				30: Preset					
				command					
				selection 4					
						31: Current DI			
						trigger point as			
						the origin			
						0: no definition			
						1: Rdy			
						2: Run			
						3: Warn			
						4: Error			
						5: TGon			
						6: Zero			
						7: VCmp			
2002	151	D0220	D016 1:	DIA.		8: VArr	1-7	Stop	Imme
2003	15h	P0320	DO1 function	RW	-	9: TArr	17	change	diate
						10: Near			effect
						11: Coin			
						12: Clt			
						13: Vlt			
						14: HomeOK			
						15: eHomeOK			
					17: BK				
				18: DB					

Inde x	Subi nde x	Parame ter	Name	Propert y	Unit	Range	Factor y deErro r	Setting mode	Enab le mod e
						19: AngRdy			
2003	16h	P0321	DO1 polarity	RW	-	0: Normally open 1: Normally close	0	Stop change	Imme diate effect
2003	17h	P0322	DO2 function	RW	-	Refer to DO1 function	2	Stop change	Imme diate effect
2003	18h	P0323	DO2 polarity	RW	-	0: Normally open 1: Normally close	0	Stop change	Imme diate effect
2003	19h	P0324	DO3 function	RW	-	Refer to DO1 function	4	Stop change	Imme diate effect
2003	1Ah	P0325	DO3 polarity	RW	-	0: Normally open 1: Normally close	0	Stop change	Imme diate effect
2003	1Fh	P0330	DIDO enforcement	RW	-	0: no operation is performed 1: Forcibly DI enabled 2: Forcibly DO enabled 3: Forcibly DIDO enabled 4: Bus forcibly DO enabled	0	Arbitrar y change	Imme diate effect
2003	20h	P0331	DI Enforcement	RW	-	0~447	447	Arbitrar y change	Imme diate effect
2003	21h	P0332	DO Channel selection	RW	-	0~7	0	Arbitrar y change	Imme diate effect
2003	23h	P0334	Communicati on forcibly DO output switch	RW	-	0~7	0	Stop change	Imme diate effect
				4 Motion co	ontrol para	meters			2233
2004	01h	P0400	Control mode	RW	-	0: Speed mode 1: Position	10	Stop change	Imme diate

	Subi						Factor		Enab
Inde	nde	Parame	Name	Propert	Unit	Range	у	Setting	le
x	X	ter	Name	у	Oilit	Kalige	deErro	mode	mod
	X						r		е
						mode			effect
						2: Torque mode			
						3: Torque mode			
						→ speed mode			
						4: Speed mode			
						→ position			
						mode			
						5: Torque mode			
						→ position			
						mode			
						6: Torque mode			
						→ speed mode			
						→ position			
						hybrid mode			
						10: EtherCAT			
						bus mode			
						0: CCW as			
			Direction of			positive			Powe
2004	02h	P0401	motor	RW	_	direction	0	Stop	r-on
2001	0211	10101	rotation	1000		1: CW as		change	reset
			rotation			positive			10000
						direction			
						0: Incremental			
			Position			mode			Powe
2004	03h	P0402	feedback	RW	_	1: Absolute	0	Stop	r-on
	33		system			linear mode		change	reset
						2: Absolute			
						rotation mode			
						0: Free stop,			
						keep free state			Imme
2004	0Bh	P0410	Type I Error	RW	-	1: DB stop,	2	Stop	diate
			stop mode			keep free state	_	change	effect
						2: DB stop,			
						keep DB state			
						0: Free stop,			
						keep free state			
			Type II Error			1: Zero speed		Stop	Imme
2004	0Ch	P0411	stop mode	RW	-	stop, keep free	2	change	diate
			•			state			effect
						2: Zero speed			
						stop, keep DB			

Inde x	Subi nde x	Parame ter	Name	Propert y	Unit	Range	Factor y deErro r	Setting mode	Enab le mod e
						state 3: DB stop, keep free state 4: DB stop,			
2004	0Dh	P0412	Selection of disable stop	RW	-	keeps DB statte 0: Free stop 1: DB stop 2: Zero speed	2	Stop change	Imme diate
2004	0Eh	P0413	mode Selection of disable stop state	RW	-	stop 0: Keep free state 1: Keep DB	1	Stop change	Imme diate effect
2004	0Fh	P0414	Selection of power-off stop mode	RW	-	state 0: Disabled mode 1: Forced zero	0	Stop change	Imme diate effect
2004	10h	P0415	Overrun stop mode	RW	-	speed mode 0: Free stop, keep free running state 1: Zero speed stop, keep position locked state 2: Zero speed stop, keep free running state	1	Stop change	Imme diate effect
2004	18h	P0423	Torque for emergency stop	RW	0.1%	0~3000	1000	Stop change	Imme diate effect
2005	01h	P0500	Manufacturer' s password	RW	setting para	0~65535	0	Arbitrar y change	Imme diate effect
2005	02h	P0501	Initialization of system parameters	RW	-	0: no operation is performed 1: Parameter initialization	0	Stop change	Imme diate effect
2005	0Bh	P0510	Save for communicatio n write	RW	-	0: Not save 1:2000 group save	3	Arbitrar y change	Imme diate effect

Inde x	Subi nde x	Parame ter	Name	Propert y	Unit	Range	Factor y deErro r	Setting mode	Enab le mod e
			parameters			2:6000 groups			
						save			
						3:2000 group			
						and 6000 group			
						save			_
2225	0.01	50544	Save for	5,4,		0: Not save		Arbitrar	Imme
2005	0Ch	P0511	power-off	RW	-	1: Save	0	У	diate
			parameters			O. Disable		change	effect
2005	006	D0E13	Holding brake	DW		0: Disable		Stop	Imme
2005	0Dh	P0512	enable switch	RW	-	1: Enable	1	change	diate effect
			Holding brake						enect
			switch off to					Arbitrar	Imme
2005	0Eh	P0513	receive	RW	ms	0~500	250	у	diate
	02	. 0020	command					change	effect
			delay						
			Holding brake					Arbitrar	Imme
2005	0Fh	P0514	switch on zero	RW	ms	1~1000	150	у	diate
			speed time					change	effect
			Holding brake					Arbitrar	Immo
2005	10h	P0515	switch on	RW	rnm	0~3000	30		Imme diate
2003	1011	P0313	speed	KVV	rpm	0~3000	30	y change	effect
			threshold					Change	enect
			Holding brake					Arbitrar	Imme
2005	11h	P0516	switch on	RW	ms	1~1000	500	у	diate
		. 0020	time					change	effect
			threshold						
2225		50540	Pre-charge	5		0: Disable		Stop	Imme
2005	14h	P0519	test enabled	RW	-	1: Enable	1	change	diate
						1:A lags B			effect
2005	18h	P0523	Frequency division	RW		0-A leads B	0	Stop	Powe
2005	1011	P0323	output phase	RVV	-	1-A lags B	0	change	r-on reset
			output phase			0: no limit			reset
			Soft limit			1: Limit		Stop	Imme
2005	2Ch	P0543	Settings	RW	-	2: Limit after	0	change	diate
			Jethings			zero return		Change	effect
				2006 Gair	n Paramete	L	I		
			Velocity					Arbitrar	Imme
2006	01h	P0600	proportional	RW	0.1Hz	1~20000	250	у	diate
			gain 1					change	effect

							Factor		Enab
Inde	Subi	Parame	Nama	Propert	11	Danas	у	Setting	le
x	nde	ter	Name	у	Unit	Range	deErro	mode	mod
	Х						r		е
			Velocity					Arbitrar	Imme
2006	02h	P0601	integral gain 1	RW	0.01ms	15~51200	3183	у	diate
			integrat gain 1					change	effect
			Position					Arbitrar	Imme
2006	03h	P0602	proportional	RW	0.1Hz	0~20000	400	у	diate
			gain 1					change	effect
			Speed					Arbitrar	Imme
2006	09h	P0608	feedforward	RW	0.1%	0~1000	0	y	diate
		. 0000	proportional		0.270	0 2000		change	effect
			gain						
			Torque					Arbitrar	Imme
2006	0Ah	P0609	feedforward	RW	0.1%	0~2000	0	у	diate
			proportional					change	effect
			gain						
2006	0.01	D0610	Load inertia	DIA.		0 10000	200	Arbitrar	Imme
2006	0Bh	P0610	ratio	RW	-	0~12000	200	У	diate
				2007 5'11				change	effect
			Docition	2007 Filte	r paramete	ers			I ma ma a
2007	016	D0700	Position	DW	0.1mc	0.65525		Stop	Imme
2007	01h	P0700	instruction FIR filtering	RW	0.1ms	0~65535	0	change	diate effect
			Position						Imme
2007	02h	P0701	instruction	RW	0.1ms	0~1280	0	Stop	diate
2001	0211	10101	mean filtering	IXVV	0.11113	0 1200		change	effect
			meanmening					Arbitrar	Imme
2007	03h	P0702	Torque	RW	0.01ms	0~3000	79	y	diate
2001	0011	1 0102	filtering 1		0.021113			change	effect
			Velocity					Arbitrar	Imme
2007	07h	P0706	feedforward	RW	0.01ms	0~6400	50	у	diate
			filtering time					change	effect
			Torque					Arbitrar	Imme
2007	08h	P0707	feedforward	RW	0.01ms	0~6400	50	y	diate
			filtering time					change	effect
			Vibration					Arbitrar	Imme
2007	0Bh	P0710	suppression	RW	Hz	50~5000	5000	у	diate
			frequency 1					change	effect
			Vibration					Arbitrar	Imme
2007	0Ch	P0711	suppression	RW	-	0~20	2	у	diate
			bandwidth 1					change	effect
2007	001-	D0713	Vibration	DW		0.00		Arbitrar	Imme
2007	0Dh	P0712	suppression	RW	-	0~99	0	у	diate

Inde x	Subi nde x	Parame ter	Name	Propert y	Unit	Range	Factor y deErro r	Setting mode	Enab le mod e
			attenuation 1				-	change	effect
			Vibration					Arbitrar	Imme
2007	0Eh	P0713	suppression	RW	Hz	50~5000	5000	у	diate
	"	. 0. 20	frequency 2					change	effect
			Vibration					Arbitrar	Imme
2007	0Fh	P0714	suppression	RW	_	0~20	2	y	diate
			bandwidth 2			0 20	_	change	effect
			Vibration					Arbitrar	Imme
2007	10h	P0715	suppression	RW	_	0~99	0	у	diate
			attenuation 2					change	effect
			Vibration					Arbitrar	Imme
2007	11h	P0716	suppression	RW	Hz	50~5000	5000	y	diate
			frequency 3					change	effect
			Vibration					Arbitrar	Imme
2007	12h	P0717	suppression	RW	-	0~20	2	y	diate
			bandwidth 3					change	effect
			Vibration					Arbitrar	Imme
2007	13h	P0718	suppression	RW	-	0~99	0	у	diate
			attenuation 3					change	effect
			Vibration					Arbitrar	Imme
2007	14h	P0719	suppression	RW	Hz	50~5000	5000	у	diate
			frequency 4					change	effect
			Vibration					Arbitrar	Imme
2007	15h	P0720	suppression	RW	-	0~20	2	у	diate
			bandwidth 4					change	effect
			Vibration					Arbitrar	Imme
2007	16h	P0721	suppression	RW	-	0~99	0	у	diate
			attenuation 4					change	effect
			Dasitian natah					Cton	Imme
2007	30h	P0747	Position notch	RW	Hz	10~1000	1000	Stop	diate
			frequency A					change	effect
								Stop	Powe
2007	49h	P0772	Probe filter	RW	25ns	0~31	15		r-on
								change	reset
			Speed arrival					Stop	Imme
2007	4Dh	P0776	-	RW	ms	0~5000	10		diate
			signal filtering					change	effect
			2	008 Protect	tion Parame	eters			
			Input phase			0: Error		Arbitrar	Imme
2008	01h	P0800	missing	RW	-	detection	0	у	diate
			detection			1: Error		change	effect

Inde x	Subi nde x	Parame ter	Name	Propert y	Unit	Range	Factor y deErro r	Setting mode	Enab le mod e
						detection and Alarm 2: No detection			
			Error			0: No detection			
2008	02h	P0801	detection for encoder multi-turn overflow	RW	-	1: Detection	1	Stop change	Imme diate effect
2008	04h	P0803	Overspeed threshold	RW	rpm	0~10000	0	Arbitrar y change	Imme diate effect
2008	09h	P0808	Position deviation removal mode	RW	-	0: Remove when the server is not running 1: Remove when servo OFF or DI signal is effective	0	Stop change	Imme diate effect
2008	0Ah	P0809	Runaway protection detection	RW	-	0: No detection 1: Detection	1	Arbitrar y change	Imme diate effect
2008	0Bh	P0810	Runaway current judgment threshold	RW	0.1%	1000~4000	2000	Arbitrar y change	Imme diate effect
2008	0Ch	P0811	Runaway speed threshold	RW	rpm	1~1000	10	Arbitrar y change	Imme diate effect
2008	0Dh	P0812	Runaway speed feedback filtering time	RW	0.1ms	1~1000	20	Arbitrar y change	Powe r-on reset
2008	0Eh	P0813	Runaway protection identification time	RW	ms	10~1000	30	Arbitrar y change	Imme diate effect
2008	0Fh	P0814	Motor overload protection gain	RW	%	50~300	100	Stop change	Imme diate effect
2008	11h	P0816	Motor overload	RW	-	0: Neither detects	3	Stop change	Imme diate

Inde x	Subi nde x	Parame ter	Name	Propert y	Unit	Range	Factor y deErro r	Setting mode	Enab le mod e
			detection			1: Motor			effect
						overload is			
						detected, drive			
						overload is not			
						detected			
						2: Motor			
						overload is not			
						detected, drive			
						overload ia			
						detected			
						3: Both detect			
						0: No detection		Arbitrar	Imme
2008	12h	P0817	Stall detection	RW	-	1 Detection	1	у	diate
						1: Detection		change	effect
			Stall					Arbitrar	Imme
2008	13h	P0818	protection	RW	ms	10~65535	200	у	diate
			time					change	effect
			Overtemperat					Chara	Powe
2008	16h	P0821	ure protection	RW	°C	0~100	0	Stop	r-on
			point of drives					change	reset
				2009 Displ	ay paramet	ers			
			Position						Imme
2009	01h	P0900	command	RO	rpm	-32767~32767	0	Display	diate
			speed						effect
			Coood						Imme
2009	02h	P0901	Speed	RO	rpm	-32767~32767	0	Display	diate
			command						effect
			Torque						Imme
2009	03h	P0902	Torque command	RO	0.1%	-32767~32767	0	Display	diate
			Command						effect
			Position						Imme
2009	04h	P0903	feedback	RO	rpm	-32767~32767	0	Display	diate
			speed						effect
									Imme
2009	05h	P0904	Actual speed	RO	rpm	-32767~32767	0	Display	diate
									effect
			Actual speed			21/7/026/0			Imme
2009	07h	P0906	(accuracy	RO	rpm	-2147483648	0	Display	diate
			0.1rpm)			~2147483647			effect
2009	0Bh	P0910	Pus voltago	PO	0.1V	065525	_	Display	Imme
2009	וופט	L 0310	Bus voltage	RO	0.10	0~65535	0	Display	diate

Inde x	Subi nde x	Parame ter	Name	Propert y	Unit	Range	Factor y deErro r	Setting mode	Enab le mod e
									effect
2009	0Ch	P0911	Control voltage	RO	0.1V	0~65535	0	Display	Imme diate effect
2009	0Dh	P0912	Output phase current RMS(U phase) of drive	RO	0.01A	0~65535	0	Display	Imme diate effect
2009	0Eh	P0913	Output line voltage RMS of drive	RO	0.1V	0~65535	0	Display	Imme diate effect
2009	0Fh	P0914	Average load rate	RO	0.1%	0~8000	0	Display	Imme diate effect
2009	10h	P0915	Drive temperature	RO	°C	0~65535	0	Display	Imme diate effect
2009	12h	P0917	Electrical Angle	RO	0.1°	0~65535	0	Display	Imme diate effect
2009	13h	P0918	DI input level monitoring	RO	-	0~65535	0	Display	Imme diate effect
2009	15h	P0920	DO output level monitoring	RO	-	0~65535	0	Display	Imme diate effect
2009	1Ah	P0925	Total running time	RO	0.1s	0~4294967295	0	Display	Imme diate effect
2009	1Ch	P0927	Current power-on running time	RO	-	0~4294967295	0	Display	Imme diate effect
2009	1Fh	P0930	Real-time instruction counter	RO	Instructi on unit	-2147483648 ~2147483647	0	Display	Imme diate effect
2009	21h	P0932	Run instruction counter	RO	Instructi on unit	-2147483648 ~2147483647	0	Display	Imme diate effect
2009	23h	P0934	Position feedback counter	RO	Instructi on unit	-2147483648 ~2147483647	0	Display	Imme diate effect

Inde x	Subi nde x	Parame ter	Name	Propert y	Unit	Range	Factor y deErro r	Setting mode	Enab le mod e
2009	25h	P0936	Position feedback counter	RO	Encoder unit	-2147483648 ~2147483647	0	Display	Imme diate effect
2009	27h	P0938	Position tracking deviation	RO	Instructi on unit	-2147483648 ~2147483647	0	Display	Imme diate effect
2009	29h	P0940	Position tracking deviation	RO	Encoder unit	-2147483648 ~2147483647	0	Display	Imme diate effect
2009	2Bh	P0942	Number of encoder turns	RO	turn	0~65535	0	Display	Imme diate effect
2009	2Ch	P0943	Encoder single turn position	RO	р	0~2147483647	0	Display	Imme diate effect
2009	2Eh	P0945	Encoder absolute position (low 32 bits)	RO	Encoder unit	-2147483648 ~2147483647	0	Display	Imme diate effect
2009	30h	P0947	Encoder absolute position (high 32 bits)	RO	Encoder unit	-2147483648 ~2147483647	0	Display	Imme diate effect
2009	32h	P0949	Mechanical absolute position (low 32 bits)	RO	Encoder unit	-2147483648 ~2147483647	0	Display	Imme diate effect
2009	34h	P0951	Mechanical absolute position (high 32 bits)	RO	Encoder unit	-2147483648 ~2147483647	0	Display	Imme diate effect
2009	36h	P0953	Rotating load single-turn position (low 32 bits)	RO	Encoder unit	0~4294967295	0	Display	Imme diate effect
2009	38h	P0955	Rotating load single-turn position (high 32 bits)	RO	Encoder unit	0~4294967295	0	Display	Imme diate effect
2009	3Ah	P0957	Rotating load single-turn position	RO	Instructi on unit	0~4294967295	0	Display	Imme diate effect

Inde x	Subi nde x	Parame ter	Name	Propert y	Unit	Range	Factor y deErro r	Setting mode	Enab le mod e
			200	A Communi	cation para	ameters		·	
200A	01h	P0A00	Slave station	RW	-	1~247	1	Arbitrar y	Imme diate
			No.					change	effect
						0:2400bps			
			ModBus Baud			1:4800bps			
			rate of			2:9600bps		Arbitrar	Imme
200A	03h	P0A02	communicatio	RW	-	3:19200bps	6	У	diate
			n			4:38400bps		change	effect
						5:57600bps			
						6:115200bps			
						0: No check, 2			
						end bits (8-N-2)			
						1: Even parity			
			ModBus			check, 1 end bit		Arbitrar	Imme
200A	04h	P0A03	communicatio	RW	-	(8-O-1)	0	y	diate
			n protocol			2: Odd parity		change	effect
						check, 1 end bit	:		
						(8-E-1)			
						3: No check, 1			
						end bit (8-N-1)			Immo
200A	0Bh	P0A10	EtherCAT	RO		0~65535	0	Display	Imme diate
200A	UDII	PUATU	version No.	RO	-	0~65555	0	Display	effect
200A	0Ch	P0A11	EtherCAT XML	RO		0~65535	0	Display	Imme diate
200A	UCII	FUAII	version No.	KO .	-	0.0333	0	Display	effect
			EtherCAT						Imme
200A	0Dh	P0A12	Slave station	RO	_	0~65535	0	Display	diate
20071		1 0/112	name	I.O		0 00000		Display	effect
			EtherCAT						Imme
200A	0Eh	P0A13	Slave station	RW	_	0~65535	0	Stop	diate
	*=	. 07.20	alias					change	effect
									Imme
200A	0Fh	P0A14	EtherCAT	RO	_	0~65535	0	Display	diate
			State machine	-					effect
									Imme
200A	10h	P0A15	EtherCAT	RO	_	0~65535	0	Display	diate
			State code					' '	effect
0.2.2		D 2 2 2 2	EtherCAT Sync				_		Imme
200A	11h	P0A16	signal loss	RO		0~65535	0	Display	diate

Inde x	Subi nde x	Parame ter	Name	Propert y	Unit	Range	Factor y deErro r	Setting mode	Enab le mod e
			count						effect
200A	12h	P0A17	EtherCAT port 0 frame invalid error count	RO	-	0~65535	0	Display	Imme diate effect
200A	13h	P0A18	EtherCAT port 1 frame invalid error count	RO	-	0~65535	0	Display	Imme diate effect
200A	14h	P0A19	EtherCAT port 0/1 frame send error count	RO	-	0~65535	0	Display	Imme diate effect
200A	15h	P0A20	EtherCAT port 0/1 frame loss error count	RO	-	0~65535	0	Display	Imme diate effect
200A	16h	P0A21	EtherCAT PDI interface error count	RO	-	0~65535	0	Display	Imme diate effect
200A	1Ah	P0A25	CSP mode instruction cache depth	RW	-	0~1	0	Stop change	Imme diate effect
200A	20h	P0A31	EtherCAT Sync Allowed times of signal loss	RW	-	0~65535	9	Arbitrar y change	Imme diate effect
200A	21h	P0A32	EtherCAT Sync Signal detection deviation threshold	RW	ns	0~4000	3000	Stop change	Imme diate effect
200A	22h	P0A33	CSP position instruction increase threshold	RW	times	1~7	3	Arbitrar y change	Imme diate effect
				nmunicatio	n auxiliary	parameters			
200E	12h	P0E17	Numerator of the 2nd set of communicatio n electronic gear ratio	RW	-	1~65535	1	Stop change	Imme diate effect
200E	13h	P0E18	Denominator of the 2nd	RW	-	1~65535	1	Stop change	Imme diate

Inde x	Subi nde x	Parame ter	Name	Propert y	Unit	Range	Factor y deErro r	Setting mode	Enab le mod e
			group of communicatio n electronic						effect
			gear ratio						
			2	01A Advan	ced adjustr		l l	I	
201A	01h	P1A00	Real-time self-adjusting settings	RW	-	0: Off 1: Standard rigid table mode 2: Quick positioning mode 5: Adaptive interpolation mode 7: Adaptive positioning mode	7	Arbitrar y change	Imme diate effect
201A	02h	P1A01	Response level setting	RW	level	0~40	16	Arbitrar y change	Imme diate effect
201A	03h	P1A02	Selection of vibration suppression mode	RW	-	0: Off 1: Vibration suppression 3 effective 2: Vibration suppression 3 and 4 are effective 3: P1A.14 shows the resonance frequency 4: Restore vibration suppression 3 and 4	0	Arbitrar y change	Imme diate effect
201A	07h	P1A06	Max. speed of inertia identification	RW	rpm	100~1000	500	Stop change	Imme diate effect
201A	08h	P1A07	Acceleration time of inertia	RW	ms	20~800	125	Stop change	Imme diate

Inde x	Subi nde x	Parame ter	Name	Propert y	Unit	Range	Factor y deErro r	Setting mode	Enab le mod e
			identification						effect
201A	09h	P1A08	Waiting time of inertia identification	RW	ms	50~10000	800	Stop change	Imme diate effect
201A	0Ah	P1A09	Inertia identification rotation turns	RW	0.01 ring	0~65535	100	Arbitrar y change	Imme diate effect
201A	13h	P1A18	Disturbance compensation gain	RW	0.1%	-1000~1000	0	Arbitrar y change	Imme diate effect
201A	14h	P1A19	Disturbance filtering time	RW	ms	0~2500	50	Arbitrar y change	Imme diate effect
201A	15h	P1A20	Partial load compensation	RW	0.1%	-1000~1000	0	Arbitrar y change	Imme diate effect
201A	16h	P1A21	Forward friction compensation	RW	0.1%	-1000~1000	0	Arbitrar y change	Imme diate effect
201A	17h	P1A22	Reverse friction compensation	RW	0.1%	-1000~1000	0	Arbitrar y change	Imme diate effect
201A	18h	P1A23	Friction compensation speed	RW	0.1rpm	1~300	20	Arbitrar y change	Imme diate effect
201A	19h	P1A24	Selection of friction compensation speed	RW	-	0~18	0	Arbitrar y change	Imme diate effect
201A	1Ah	P1A25	Low frequency vibration detection enabled	RW	-	0: Off 1: Start	0	Arbitrar y change	Imme diate effect
				2020 Auxilia	ary parame	ters			
2020	03h	P2002	Emergency shutdown	RW	-	0: no operation is performed 1: Emergency shutdown	0	Arbitrar y change	Imme diate effect
2020	04h	P2003	Error reset	RW	-	0: no operation is performed	0	Stop change	Imme diate

Inde x	Subi nde x	Parame ter	Name	Propert y	Unit	Range	Factor y deErro r	Setting mode	Enab le mod e
						1: Error reset	•		effect
2020	05h	P2004	Software reset	RW	-	0: no operation is performed 1: Software reset	0	Stop change	Imme diate effect
2020	06h	P2005	Encoder reset	RW	-	0: no operation is performed 1: Reset the Error 2: Reset the Error and number of rings	0	Stop change	Imme diate effect
2020	07h	P2006	Read/write of encoder parameters	RW	-	0: no operation is performed 1: Write operation 2: Read operation	0	Stop change	Imme diate effect
2020	27h	P2038	Call enable	RW	-	0~1	0	Arbitrar y change	Imme diate effect
2020	29h	P2040	Bus read and servo state	RO	-	0~65535	0	Display	Imme diate effect
2020	2Ah	P2041	Bus read DO low 16-bit function	RO	-	0~65535	0	Display	Imme diate effect
2020	2Bh	P2042	Bus read DO high 16-bit function	RO	-	0~65535	0	Display	Imme diate effect
2020	33h	P2050	Bus setting VDI level	RW	-	0~65535	0	Arbitrar y change	Imme diate effect
2020	34h	P2051	Bus setting DO output	RW	-	0~7	0	Arbitrar y change	Imme diate effect
			202	1 Error diag	gnosis para	meters			
2021	01h	P2100	Exception parameter group ID	RO	-	0~65535	0	Display	Imme diate effect
2021	02h	P2101	Exception	RO	-	0~65535	0	Display	Imme

Inde x	Subi nde x	Parame ter	Name	Propert y	Unit	Range	Factor y deErro r	Setting mode	Enab le mod e
			parameter group bias						diate effect
2021	03h	P2102	FPGA-side system status information	RO	-	0~65535	0	Display	Imme diate effect
2021	04h	P2103	FPGA-side system Error information	RO	-	0~65535	0	Display	Imme diate effect
2021	05h	P2104	FPGA-side timeout Error information	RO	-	0~65535	0	Display	Imme diate effect
2021	06h	P2105	FPGA-side encoder Error information	RO	-	0~65535	0	Display	Imme diate effect
2021	07h	P2106	Encoder status information	RW	-	0~65535	0	Arbitrar y change	Imme diate effect
2021	09h	P2108	Current Error code	RO	-	0~65535	0	Display	Imme diate effect
2021	1Fh	P2130	Error logging query	RW	-	0: current Error 1: the latest one Error 2: the latest two Errors 3: the last three Errors 4: the last four Errors 5: the last five Errors 6: the last six Errors 7: the last seven Errors 8: the last eight Errors 9: the last nine Errors	0	Arbitrar y change	Imme diate effect
2021	20h	P2131	When the Error is	RO	-	0~65535	0	Display	Imme diate

Inde x	Subi nde x	Parame ter	Name	Propert y	Unit	Range	Factor y deErro r	Setting mode	Enab le mod e
			selected,the						effect
			Error code						
2021	21h	P2132	When the Error is selected,inter nal Error code	RO	-	0~65535	0	Display	Imme diate effect
2021	22h	P2133	When the Error is selected,time stamp	RO	0.1s	0~4294967295	0	Display	Imme diate effect
2021	24h	P2135	When the Error is selected,rotati on speed	RO	rpm	-32767~32767	0	Display	Imme diate effect
2021	25h	P2136	When the Error is selected,U-ph ase current	RO	0.01A	-32767~32767	0	Display	Imme diate effect
2021	26h	P2137	When the Error is selected,V-ph ase current	RO	0.01A	-32767~32767	0	Display	Imme diate effect
2021	27h	P2138	When the Error is selected,Bus voltage	RO	0.1V	0~65535	0	Display	Imme diate effect
2021	28h	P2139	When the Error is selected,DI input state	RO	-	0~65535	0	Display	Imme diate effect
2021	29h	P2140	When the Error is selected,DO output state	RO	-	0~65535	0	Display	Imme diate effect
2021	2Ah	P2141	When the Error is selected,FPGA -side system state info.	RO	-	0~65535	0	Display	Imme diate effect
2021	2Bh	P2142	When the Error is selected,FPGA	RO	-	0~65535	0	Display	Imme diate effect

Inde x	Subi nde x	Parame ter	Name	Propert y	Unit	Range	Factor y deErro r	Setting mode	Enab le mod e
			-side system						
			Error info.						
			When the						
2021	261	D01.40	Error is	D0		0.05525		5	Imme
2021	2Ch	P2143	selected,FPGA	RO	-	0~65535	0	Display	diate
			-side system						effect
			timeout info.						
			When the						
			Error is						Imme
2021	2Dh	P2144	selected,FPGA	RO	-	0~65535	0	Display	diate
			-side system encoder Error						effect
			info.						
			When the						
			Error is						Imme
2021	2Eh	P2145	selected,enco	RO	-	0~65535	0	Display	diate
			der state info.						effect
				Fully close	ed loop para	l ameters			
			2022	Tutty ctost	u toop puit	0: Internal			
						encoder			
						feedback			
						1: External			
						encoder			
						feedback			
			Encoder			2: When DI	_	Stop	Imme
2022	01h	P2200	selection	RW	-	switches the	0	change	diate
						electronic gear			effect
						ratio,			
						internal/extern			
						al ring encoder			
						feedback is			
						switched			
						0: Disables			
			External			external			Powe
2022	02h	P2201	encoder	RW	_	encoder	0	Stop	r-on
2022	0211	1 2201	Enable	IXVV		1: Enable		change	reset
			selection			external ABZ			reset
						encoder			
			External			0: Use deError			Imme
2022	03h	P2202	encoder	RW	_	direction	0	Stop	diate
_0		. 2202	Direction	11.44		1: Use reverse		change	effect
			selection			direction			5.1000

Inde x	Subi nde x	Parame ter	Name	Propert y	Unit	Range	Factor y deErro r	Setting mode	Enab le mod e
2022	04h	P2203	Number of external encoder pulses per motor rotation	RW	р	1~1073741824	10000	Stop change	Imme diate effect
2022	06h	P2205	Numerator of the 2nd set of communicatio n electronic gear ratio	RW	-	1~1073741824	4	Arbitrar y change	Imme diate effect
2022	08h	P2207	Denominator of the 2nd group of communicatio n electronic gear ratio	RW	-	1~1073741824	1	Arbitrar y change	Imme diate effect
2022	0Bh	P2210	Fully closed loop deviation Filtering time	RW	0.1ms	0~65535	0	Stop change	Imme diate effect
2022	0Ch	P2211	Hybrid control deviation threshold	RW	-	0~1073741824	1000	Arbitrar y change	Imme diate effect
2022	0Eh	P2213	Hybrid control deviation Clear setting	RW	-	0~100	1	Arbitrar y change	Imme diate effect
2022	0Fh	P2214	Fully closed loop external Position error	RO	р	-1073741824 ~1073741824	0	Display	Imme diate effect
2022	11h	P2216	Internal encoder feedback value	RO	р	-1073741824 ~1073741824	0	Display	Imme diate effect
2022	13h	P2218	External encoder feedback value	RO	р	-1073741824 ~1073741824	0	Display	Imme diate effect
				023 Virtual	I/O parame	eters			
2023	01h	P2300	VDI enabled	RW	-	0: Disable 1: Enable	0	Stop change	Imme diate effect
2023	02h	P2301	Initial status	RW	-	0~65535	0	Arbitrar	Powe

Inde x	Subi nde x	Parame ter	Name	Propert y	Unit	Range	Factor y deErro r	Setting mode	Enab le mod e
			of VDI					у	r-on
			power-on					change	reset
						0: Disable		Stop	Imme
2023	03h	P2302	VDO enabled	RW	-	1: Enable	0	change	diate effect
						0x0:VDO1			Circu
						DeError value			
						0x1:VDO2			
						DeError value			
						0x2:VDO3			
						DeError value			
						0x3:VDO4			
						DeError value			
						0x4:VDO5			
						DeError value			
						0x5:VDO6			
						DeError value			
						0x6:VDO7			
				DW.		DeError value		Stop change	
						0x7:VDO8			
2022	0.41	D2202	DeError value			DeError value			Imme
2023	04h	P2303	for undefined	RW	-	0x8:VDO9	0		diate
			VDO			DeError value			effect
						0x9:VDO10			
						DeError value			
						0xa:VDO11			
						DeError value			
						0xb:VDO12			
						DeError value			
						0xc:VDO13			
						DeError value			
						0xd:VDO14			
						DeError value			
						0xe:VDO15			
						DeError value			
						0xf:VDO16			
						DeError value			
						0: no definition		Arbitrar	Imme
2023	07h	P2306	VDI1 function	RW	-	1: Servo	0	у	diate
2023	""	1 2300	VDIT IGHICTION	1.00		enabled		change	effect
						2: Emergency		change	2.1000

Inde x	Subi nde x	Parame ter	Name	Propert y	Unit	Range	Factor y deErro r	Setting mode	Enab le mod e
						shutdown			
						3: Command			
						forbidden			
						4: Position			
						deviation			
						cleared			
						5: Reset the			
						Error			
						6: Zero speed			
						retention			
						7: Forward			
						jogging			
						8: Reverse			
						jogging			
						9: Forwar limit			
						10: Reverse			
						limit			
						11: Origin			
						switch			
						12: Zero to			
						return enabled			
						13: Speed limit			
						selection			
						14: Forward			
						torque limit			
						selection			
						15: Reverse			
						torque limit			
						selection			
						16: Preset			
						position			
						enabled			
						19: Torque			
						instruction			
						reversing			
						20: Speed	1		
						instruction			
						reversing			
						switch			
						21: Position	1		
						command			

Inde x	Subi nde x	Parame ter	Name	Propert y	Unit	Range	Factor y deErro r	Setting mode	Enab le mod e
						reversing switch			
						22: Gain switch selection			
						23: Operation			
						command			
						switch			
						24: Mode			
						switch 1			
						25: Mode			
						switch 2			
						26: Electronic			
						gear switch			
						27: Preset			
						command			
						selection 1			
						28: Preset			
						command			
						selection 2			
						29: Preset			
						command			
						selection 3			
						30: Preset			
						command			
						selection 4			
						31: Current DI			
						trigger point as			
						the origin 33: Probe 1			
						34: Probe 2			
						0: Write 1 valid			
						1: Write rising		Arbitrar	Imme
2023	08h	P2307	VDI1 polarity	RW	-	edge valid	0	У	diate
						(0→1)		change	effect
								Arbitrar	Imme
2023	09h	P2308	VDI2 function	RW	-	Refer to VDI1	0	у	diate
						function		change	effect
						0: Write 1 valid		Arbitrar	Imma
2023	0Ah	P2309	VDI2 polarity	RW	_	1: Write rising	0		Imme diate
2023	UAII	1 2303	VDIZ POLATICY	INVV	-	edge valid		y change	effect
						(0→1)		Change	CHECL

Inde x	Subi nde x	Parame ter	Name	Propert y	Unit	Range	Factor y deErro r	Setting mode	Enab le mod e
2023	0Bh	P2310	VDI3 function	RW	-	Refer to VDI1 function	0	Arbitrar y change	Imme diate effect
2023	0Ch	P2311	VDI3 polarity	RW	-	0: Write 1 valid 1: Write rising edge valid (0→1)	0	Arbitrar y change	Imme diate effect
2023	0Dh	P2312	VDI4 function	RW	-	Refer to VDI1 function	0	Arbitrar y change	Imme diate effect
2023	0Eh	P2313	VDI4 polarity	RW	-	0: Write 1 valid 1: Write rising edge valid (0→1)	0	Arbitrar y change	Imme diate effect
2023	0Fh	P2314	VDI5 function	RW	-	Refer to VDI1 function	0	Arbitrar y change	Imme diate effect
2023	10h	P2315	VDI5 polarity	RW	-	0: Write 1 valid 1: Write rising edge valid (0→1)	0	Arbitrar y change	Imme diate effect
2023	11h	P2316	VDI6 function	RW	-	Refer to VDI1 function	0	Arbitrar y change	Imme diate effect
2023	12h	P2317	VDI6 polarity	RW	-	0: Write 1 valid 1: Write rising edge valid (0→1)	0	Arbitrar y change	Imme diate effect
2023	13h	P2318	VDI7 function	RW	-	Refer to VDI1 function	0	Arbitrar y change	Imme diate effect
2023	14h	P2319	VDI7 polarity	RW	-	0: Write 1 valid 1: Write rising edge valid (0→1)	0	Arbitrar y change	Imme diate effect
2023	15h	P2320	VDI8 function	RW	-	Refer to VDI1 function	0	Arbitrar y change	Imme diate effect
2023	16h	P2321	VDI8 polarity	RW	-	0: Write 1 valid 1: Write rising edge valid	0	Arbitrar y change	Imme diate effect

Inde x	Subi nde x	Parame ter	Name	Propert y	Unit	Range	Factor y deErro	Setting mode	Enab le mod
	^						r		е
						(0→1)			
2023	17h	P2322	VDI9 function	RW	-	Refer to VDI1 function	0	Arbitrar y change	Imme diate effect
2023	18h	P2323	VDI9 polarity	RW	-	0: Write 1 valid 1: Write rising edge valid (0→1)	0	Arbitrar y change	Imme diate effect
2023	19h	P2324	VDI10 function	RW	-	Refer to VDI1 function	0	Arbitrar y change	Imme diate effect
2023	1Ah	P2325	VDI10 polarity	RW	-	0: Write 1 valid 1: Write rising edge valid (0→1)	0	Arbitrar y change	Imme diate effect
2023	1Bh	P2326	VDI11 function	Refer to VDI1		0	Arbitrar y change	Imme diate effect	
2023	1Ch	P2327	VDI11 polarity	RW	-	0: Write 1 valid 1: Write rising edge valid (0→1)	0	Arbitrar y change	Imme diate effect
2023	1Dh	P2328	VDI12 function	RW	-	Refer to VDI1 function	0	Arbitrar y change	Imme diate effect
2023	1Eh	P2329	VDI12 polarity	RW	-	0: Write 1 valid 1: Write rising edge valid (0→1)	0	Arbitrar y change	Imme diate effect
2023	1Fh	P2330	VDI13 function	RW	-	Refer to VDI1 function	0	Arbitrar y change	Imme diate effect
2023	20h	P2331	VDI13 polarity	RW	-	0: Write 1 valid 1: Write rising edge valid (0→1)	0	Arbitrar y change	Imme diate effect
2023	21h	P2332	VDI14 function	RW	-	Refer to VDI1 function	0	Arbitrar y change	Imme diate effect
2023	22h	P2333	VDI14 polarity	RW	-	0: Write 1 valid 1: Write rising	0	Arbitrar y	Imme diate

Inde x	Subi nde x	Parame ter	Name	Propert y	Unit	Range	Factor y deErro r	Setting mode	Enab le mod e
						edge valid (0→1)		change	effect
2023	23h	P2334	VDI15 function	RW	-	Refer to VDI1 function	0	Arbitrar y change	Imme diate effect
2023	24h	P2335	VDI15 polarity	RW	-	0: Write 1 valid 1: Write rising edge valid (0→1)	0	Arbitrar y change	Imme diate effect
2023	25h	P2336	VDI16 function	RW	-	Refer to VDI1 function	0	Arbitrar y change	Imme diate effect
2023	26h	P2337	VDI16 polarity	RW	-	0: Write 1 valid 1: Write rising edge valid (0→1)	0	Arbitrar y change	Imme diate effect
2023	2Bh	P2342	VDO output level	RO	-	0~65535	0	Display	Imme diate effect
2023	2Ch	P2343	VDO1 function	RW	-	0: no definition 1: Rdy 2: Run 3: Warn 4: Error 5: TGon 6: Zero 7: VCmp 8: VArr 9: TArr 10: Near 11: Coin 12: Clt 13: Vlt 14: HomeOK 15: eHomeOK 17: BK 18: DB 19: AngRdy	0	Arbitrar y change	Imme diate effect
2023	2Dh	P2344	VDO1 polarity	RW	-	0: Output 1 when valid 1: Output 0	0	Arbitrar y change	Imme diate effect

Inde x	Subi nde x	Parame ter	Name	Propert y	Unit	Range	Factor y deErro r	Setting mode	Enab le mod e
						when valid			
2023	2Eh	P2345	VDO2 function	RW	-	Refer to VDO1 function	0	Arbitrar y change	Imme diate effect
2023	2Fh	P2346	VDO2 polarity	RW	-	0: Output 1 when valid 1: Output 0 when valid	0	Arbitrar y change	Imme diate effect
2023	30h	P2347	VDO3 function	RW	-	Refer to VDO1 function	0	Arbitrar y change	Imme diate effect
2023	31h	P2348	VDO3 polarity	RW	-	0: Output 1 when valid 1: Output 0 when valid	0	Arbitrar y change	Imme diate effect
2023	32h	P2349	VDO4 function	RW	-	Refer to VDO1 function	0	Arbitrar y change	Imme diate effect
2023	33h	P2350	VDO4 polarity	RW	-	0: Output 1 when valid 1: Output 0 when valid	0	Arbitrar y change	Imme diate effect
2023	34h	P2351	VDO5 function	RW	-	Refer to VDO1 function	0	Arbitrar y change	Imme diate effect
2023	35h	P2352	VDO5 polarity	RW	-	0: Output 1 when valid 1: Output 0 when valid	0	Arbitrar y change	Imme diate effect
2023	36h	P2353	VDO6 function	RW	-	Refer to VDO1 function	0	Arbitrar y change	Imme diate effect
2023	37h	P2354	VDO6 polarity	RW	-	0: Output 1 when valid 1: Output 0 when valid	0	Arbitrar y change	Imme diate effect
2023	38h	P2355	VDO7 function	RW	-	Refer to VDO1 function	0	Arbitrar y change	Imme diate effect
2023	39h	P2356	VDO7 polarity	RW	-	0: Output 1 when valid	0	Arbitrar y	Imme diate

Inde x	Subi nde x	Parame ter	Name	Propert y	Unit	Range	Factor y deErro r	Setting mode	Enab le mod e
						1: Output 0 when valid		change	effect
2023	3Ah	P2357	VDO8 function	RW	-	Refer to VDO1 function	0	Arbitrar y change	Imme diate effect
2023	3Bh	P2358	VDO8 polarity	RW	-	0: Output 1 when valid 1: Output 0 when valid	0	Arbitrar y change	Imme diate effect
2023	3Ch	P2359	VDO9 function	RW	-	Refer to VDO1 function	0	Arbitrar y change	Imme diate effect
2023	3Dh	P2360	VDO9 polarity	RW	-	0: Output 1 when valid 1: Output 0 when valid	0	Arbitrar y change	Imme diate effect
2023	3Eh	P2361	VDO10 function	RW	-	Refer to VDO1 function	0	Arbitrar y change	Imme diate effect
2023	3Fh	P2362	VDO10 polarity	RW	-	0: Output 1 when valid 1: Output 0 when valid	0	Arbitrar y change	Imme diate effect
2023	40h	P2363	VDO11 function	RW	-	Refer to VDO1 function	0	Arbitrar y change	Imme diate effect
2023	41h	P2364	VDO11 polarity	RW	-	0: Output 1 when valid 1: Output 0 when valid	0	Arbitrar y change	Imme diate effect
2023	42h	P2365	VDO12 function	RW	-	Refer to VDO1 function	0	Arbitrar y change	Imme diate effect
2023	43h	P2366	VDO12 polarity	RW	-	0: Output 1 when valid 1: Output 0 when valid	0	Arbitrar y change	Imme diate effect
2023	44h	P2367	VDO13 function	RW	-	Refer to VDO1 function	0	Arbitrar y change	Imme diate effect
2023	45h	P2368	VDO13	RW	-	0: Output 1	0	Arbitrar	Imme

Inde x	Subi nde x	Parame ter	Name	Propert y	Unit	Range	Factor y deErro r	Setting mode	Enab le mod e
			polarity			when valid 1: Output 0		y change	diate effect
2023	46h	P2369	VDO14 function	RW	-	when valid Refer to VDO1 function	0	Arbitrar y change	Imme diate effect
2023	47h	P2370	VDO14 polarity	RW	-	0: Output 1 when valid 1: Output 0 when valid	0	Arbitrar y change	Imme diate effect
2023	48h	P2371	VDO15 function	RW	-	Refer to VDO1 function	0	Arbitrar y change	Imme diate effect
2023	49h	P2372	VDO15 polarity	RW	-	0: Output 1 when valid 1: Output 0 when valid	0	Arbitrar y change	Imme diate effect
2023	4Ah	P2373	VDO16 function	RW	-	Refer to VDO1 function	0	Arbitrar y change	Imme diate effect
2023	4Bh	P2374	VDO16 polarity	RW	-	0: Output 1 when valid 1: Output 0 when valid	0	Arbitrar y change	Imme diate effect

7.3 Allocation List of Object Group 6000h

6000h object group contains the objects related to supported sub-protocol DSP 402.

Table 7-3 List of 6000h object group

				Table 7-3	LISCOL	6000h object	group			
Index	Subi ndex	Name	Pr o p er ty	PDO mappin g	Data type	Unit	Data range	Factory deError	Chan ge mod e	Enab le mod e
603Fh	0	Error code	R O	TxPDO	UINT16	-	0~65535	0	Displ ay	No
6040h	0	Control word	R W	RxPDO	UINT16	-	0~65535	0	Arbit rary chan ge	Stop effec t
6041h	0	Status word	R O	TxPDO	UINT16	-	0~65535	0	Displ ay	No
605Ah	0	Selection of quick stop mode	R W	NO	INT16		0~7	2	Arbit rary chan ge	Stop effec t
605Dh	0	Selection of pause stop mode	R W	NO	INT16		1~3	1	Arbit rary chan ge	Stop effec t
6060h	0	Servo mode selection	R W	RxPDO	INT8	-	0~10	0	Arbit rary chan ge	Stop effec t
6061h	0	Run mode display	R O	TxPDO	INT8	-	0~10	0	Displ ay	No
6062h	0	Position instruction	R O	TxPDO	DINT32	1 instructio n unit	-	-	Displ ay	No
6063h	0	Position feedback	R O	TxPDO	DINT32	1 encoder unit	-	-	Displ ay Para mete r	No
6064h	0	Position feedback	R O	TxPDO	DINT32	1 instructio n unit	-	-	Displ ay	No
6065h	0	Threshold of large	R W	RxPDO	UDINT 32	1 instructio	20bit motor: 3145728	1048576	Arbit rary	Stop effec

Index	Subi ndex	Name	Pr o p er ty	PDO mappin g	Data type	Unit	Data range	Factory deError	Chan ge mod e	Enab le mod e
		position deviation				n unit	23bit motor: 25165824		chan ge	t
6067h	0	Threshold of position arrival	R W	RxPDO	UINT32	1 encoder unit	0~65535	734	Arbit rary chan ge	Imm ediat e effec t
6068h	0	Position arrival window time	R W	RxPDO	UINT16	1ms	0~65535	x16	Arbit rary chan ge	Imm ediat e effec t
606Ch	0	Actual velocity	R O	TxPDO	INT32	1 Command unit/s	-	-	Displ ay	No
606Dh	0	the threshold of speed arrival	R W	RxPDO	UINT16	1rpm	0~65535	10	Arbit rary chan ge	Stop effec t
606Eh	0	Speed arrives window time	R W	RxPDO	UINT16	1ms	0~65535	0	Arbit rary chan ge	Stop effec t
6071h	0	Target torque	R W	RxPDO	INT16	0.10%	-5000~5000	0	Arbit rary chan ge	Stop effec t
6072h	0	Maximum torque instruction	R W	RxPDO	UINT16	0.10%	0~5000	5000	Arbit rary chan ge	Stop effec t
6074h	0	Torque command	R O	TxPDO	INT16	0.10%	-5000~5000	0	Displ ay	No
6077h	0	Actual torque	R O	TxPDO	INT16	0.10%	-5000~5000	0	Displ ay Para mete r	No
607Ah	0	Target position	R W	RxPDO	INT32	1 instructio	-2 ³¹ ~(2 ³¹ -1)	0	Arbit rary	Stop effec

Index	Subi ndex	Name	Pr o p er ty	PDO mappin g	Data type	Unit	Data range	Factory deError	Chan ge mod e	Enab le mod e
						n unit			chan	t
607Ch	0	Origin offset	R W	RxPDO	INT32	1 instructio n unit	-2 ³¹ ~(2 ³¹ -1)	0	ge Arbit rary chan ge	Stop effec t
				Softv	vare absol	ute location re	estrictions		•	
	0	Number of subindex	R O	NO	UINT8	-	-	2	Displ ay	No
607Dh	1	Min. position restriction	R W	RxPDO	INT32	1 User position unit	-2 ³¹ ~(2 ³¹ -1)	-231	Arbit rary chan ge	Stop effec t
	2	Max. position restriction	R W	RxPDO	INT32	1 User position unit	-2 ³¹ ~(2 ³¹ -1)	231-1	Arbit rary chan ge	Stop effec t
607Eh	0	Command polarity	R W	RxPDO	UINT8	-	00~FF	0	Arbit rary chan ge	Stop effec t
607Fh	0	Max. speed	R W	RxPDO	UDINT 32	1 Command unit/s	0~(2 ³² -1)	108	Arbit rary chan ge	Stop effec t
6081h	0	Profile speed	R W	RxPDO	UDINT 32	1 User speed unit	0~(2 ³² -1)	0	Arbit rary chan ge	Stop effec t
6083h	0	Profile acceleratio n	R W	RxPDO	UDINT 32	1 instructio n unit /s2	0~(2 ³² -1)	100	Arbit rary chan ge	Stop effec t
6084h	0	Profile deceleratio n	R W	RxPDO	UDINT 32	1 instructio n unit /s2	0~(2 ³² -1)	100	Arbit rary chan ge	Stop effec t
6085h	0	Quick stop deceleratio n	R W	RxPDO	UDINT 32	1 User accelerati on unit	0~(2 ³² -1)	100	Arbit rary chan	Stop effec t

Index	Subi ndex	Name	Pr o p er ty	PDO mappin g	Data type	Unit	Data range	Factory deError	Chan ge mod e	Enab le mod e
									ge	
6086h	0	Operation curve selection	R W	RxPDO	INT16	-	-2 ¹⁵ ~(2 ¹⁵ -1)	0	Arbit rary chan ge	Stop effec t
6087h	0	Torque ramp	R W	RxPDO	UDINT 32	0.1%/s	0~(2 ³² -1)	232-1	Arbit rary chan ge	Stop effec t
					(Gear ratio				
	0	Number of subindex	R O	NO	UINT8	-	-	2	Displ ay	No
6091h	1	Motor resolution	R W	RxPDO	UINT32	-	1~(2 ³² -1)	1	Arbit rary chan ge	Imm ediat e effec t
	2	Load shaft resolution	R W	RxPDO	UINT32	-	1~(2 ³² -1)	1	Arbit rary chan ge	Imm ediat e effec t
6098h		Origin return method	R W	RxPDO	INT8	-	-2~35	1	Arbit rary chan ge	Stop effec t
					Return-	-to-zero veloc	ity			
	0	Number of subindexes of return to zero speed	R O	NO	UINT8	-	2	2	Displ ay	No
6099h	1	Deceleratio n point of high-speed search	R W	RxPDO	UINT32	1 Command unit/s	0~(2 ³² -1)	100	Arbit rary chan ge	Stop effec t
	2	Search origin low speed	R W	RxPDO	UINT32	1 Command unit/s	10~(2 ³² -1)	100	Arbit rary chan ge	Stop effec t
609Ah	0	Return-to-z	R	RxPDO	UDINT	1	0~(2 ³² -1)	100	Arbit	Stop

Index	Subi ndex	Name	Pr o p er ty	PDO mappin g	Data type	Unit	Data range	Factory deError	Chan ge mod e	Enab le mod e
		ero acceleratio n	W		32	instructio n unit /s2			rary chan ge	effec t
60B0h	0	Position bias	R W	RxPDO	INT32	1 instructio n unit	-2 ³¹ ~(2 ³¹ -1)	0	Arbit rary chan ge	Stop effec t
60B1h	0	Velocity bias	R W	RxPDO	INT32	1 Command unit/s	-2 ³¹ ~(2 ³¹ -1)	0	Arbit rary chan ge	Stop effec t
60B2h	0	Torque bias	R W	RxPDO	INT16	0.10%	-5000~5000	0	Arbit rary chan ge	Stop effec t
60B8h	0	Probe mode	R W	RxPDO	UINT16	-	0~65535	0	Arbit rary chan ge	Stop effec t
60B9h	0	Probe status	R O	TxPDO	UINT16	-	0~65535	0	Displ ay	No
60BAh	0	Probe 1 rising edge position value	R O	TxPDO	INT32	1 instructio n unit	-2 ³¹ ~(2 ³¹ -1)	0	Displ ay	No
60BB h	0	Probe 1 falling edge position value	R O	TxPDO	INT32	1 instructio n unit	-2 ³¹ ~(2 ³¹ -1)	0	Displ ay	No
60BC h	0	Probe 2 rising edge position value	R O	TxPDO	INT32	1 instructio n unit	-2 ³¹ ~(2 ³¹ -1)	0	Displ ay	No
60BD h	0	Probe 2 falling edge position value	R O	TxPDO	INT32	1 instructio n unit	-2 ³¹ ~(2 ³¹ -1)	0	Displ ay	No
60E0h	0	Forward torque limit	R W	RxPDO	UINT16	0.10%	0~5000	5000	Arbit rary chan	Stop effec t

Index	Subi ndex	Name	Pr o p er ty	PDO mappin g	Data type	Unit	Data range	Factory deError	Chan ge mod e	Enab le mod e
									ge	
60E1h	0	Reverse torque limit	R W	RxPDO	UINT16	0.10%	0~5000	5000	Arbit rary chan ge	Stop effec t
					Supported	zero return r	node			
	0	Number of subindexes of supported zero return modes	R O	NO	UINT8	-	-	31	Displ ay	No
	1	Zero return mode 1 supported	R O	NO	UINT16	-	-	0301h	Displ ay	No
	2	Zero return mode 2 supported	R O	NO	UINT16	-	-	0302h	Displ ay	No
	3	Zero return mode 3 supported	R O	NO	UINT16	-	-	0303h	Displ ay	No
60E3h	4	Zero return mode 4 supported	R O	NO	UINT16	-	-	0304h	Displ ay	No
	5	Zero return mode 5 supported	R O	NO	UINT16	1	-	0305h	Displ ay	No
	6	Zero return mode 6 supported	R O	NO	UINT16	-	-	0306h	Displ ay	No
	7	Supported Zero return mode 7	R O	NO	UINT16	-	-	0307h	Displ ay	No
	8	Zero return mode 8 supported	R O	NO	UINT16	-	-	0308h	Displ ay	No
	9	Zero return mode 9 supported	R O	NO	UINT16	-	-	0309h	Displ ay	No
	0A	Zero return	R	NO	UINT16	-	-	030Ah	Displ	No

Index	Subi ndex	Name	Pr o p er ty	PDO mappin g	Data type	Unit	Data range	Factory deError	Chan ge mod e	Enab le mod e
		mode 10 supported	0						ay	
	0B	Zero return mode 11 supported	R O	NO	UINT16	-	-	030Bh	Displ ay	No
	0C	Zero return mode 12 supported	R O	NO	UINT16	-	-	030Ch	Displ ay	No
	0D	Zero return mode 13 supported	R O	NO	UINT16	-	-	030Dh	Displ ay	No
	0E	Zero return mode 14 supported	R O	NO	UINT16	-	-	030Eh	Displ ay	No
	0F	Zero return mode 15 supported	R O	NO	UINT16	-	-	030Fh	Displ ay	No
	10	Zero return mode 16 supported	R O	NO	UINT16	-	-	0310h	Displ ay	No
	11	Zero return mode 17 supported	R O	NO	UINT16	-	-	0311h	Displ ay	No
	12	Zero return mode 18 supported	R O	NO	UINT16	1	-	0312h	Displ ay	No
	13	Zero return mode 19 supported	R O	NO	UINT16	-	-	0313h	Displ ay	No
	14	Zero return mode 20 supported	R O	NO	UINT16	-	-	0314h	Displ ay	No
	15	Zero return mode 21 supported	R O	NO	UINT16	-	-	0315h	Displ ay	No
	16	Zero return mode 22 supported	R O	NO	UINT16	-	-	0316h	Displ ay	No
	17	Zero return mode 23	R O	NO	UINT16	-	-	0317h	Displ ay	No

Index	Subi ndex	Name	Pr o p er ty	PDO mappin g	Data type	Unit	Data range	Factory deError	Chan ge mod e	Enab le mod e
		supported								
	18	Zero return mode 24 supported	R O	NO	UINT16	-	-	0318h	Displ ay	No
	19	Zero return mode 25 supported	R O	NO	UINT16	-	-	0319h	Displ ay	No
	1A	Zero return mode 26 supported	R O	NO	UINT16	-	-	031Ah	Displ ay	No
	1B	Zero return mode 27 supported	R O	NO	UINT16	-	-	031Bh	Displ ay	No
	1C	Zero return mode 28 supported	R O	NO	UINT16	-	-	031Ch	Displ ay	No
	1D	Zero return mode 29 supported	R O	NO	UINT16	-	-	031Dh	Displ ay	No
	1E	Zero return mode 30 supported	R O	NO	UINT16	-	-	031Eh	Displ ay	No
	1F	Zero return mode 31 supported	R O	NO	UINT16	-	-	031Fh	Displ ay	No
60E6h	0	Actual position calculation	R W	NO	UINT8	-	0~1	0	Arbit rary chan ge	Stop effec t
60F4h	0	Position deviation	R O	RxPDO	DINT32	1 instructio n unit	-	-	Displ ay	No
60FCh	0	Position instruction	R O	TxPDO	DINT32	1 encoder unit	-	-	Displ ay	No
60FDh	0	DI state	R O	RxPDO	UDINT 32	-	0~FFFFFFF	0	Displ ay	No

Th present DI t-erminal logic of response drive Logic invalid Logic valid

Each bit represents the corresponding DI signal as follows:

Index	Subi ndex	Name	Pr o p er ty	PDO mappin g	Data type	U	Init	Data range	Factory deError	Chan ge mod e	Enab le mod e
		P0/	\28=2	2			P0A28=0 P0A28=1				
								P0A2	28=3		
		bit		signal				bit	sign	al	
		0	Re	verse overi switch	range			0	Reverse ov swite	_	
		1	Fo	rward over switch	range			1	Forward ov	_	
		2		Origin swit	tch			2	Origin s	witch	
		3~15		NA				3~15	NA		
		16		Z signal				16	DI1		
		17		Probe1				17	DI2	•	
		18		Probe2				18	DI3		
		19		NA				19	DI4		
		20		DI1				20	DI5		
		21		DI2				21	DI6		
		22		DI3				22	NA		
		23	F	orward tor output				23	HDI	1	
		24	ı	Reverse tor output				24	HDI	2	
		25~31		NA				25~31	NA		
					D	igital o	utput	<u>'</u>			
	0	DO state	R O	NO	UINT8		-	-	1	Displ ay	No
60FEh	1	Physical output	R W	RxPDO	UINT32		-	0~FFFFFFF	0	Arbit rary chan ge	Stop effec t
	2	Physical output enable	R W	NO	UINT32		-	0~FFFFFFF	0	Arbit rary chan ge	Stop effec t
60FFh	0	Target speed	R W	RxPDO	INT32		1 nmand nit/s	-461	0	Arbit rary chan ge	Stop effec t
6502h	0	Supported drive mode	R O	NO	UDINT 32		-	-	3A1h	Displ ay	No

Chapter 8 Appendix

8.1 Definition of DI/DO functions

Function No.	Function name	Description
		Description on Input signal functions
1	Servo enable	Valid: Servo motor power-on enable Invalid: Servo motor power-on is disabled
2	Emergency shutdown	Valid: Position locked after zero speed stop; Invalid: Present running status is not affected.
3	Instruction disable	Valid: Disable position instruction input Invalid: Position instruction input is allowed
4	Position deviation cleared (edge effective function)	Valid: Position deviation is zero cleared; Invalid: Position deviation is not cleared.
5	Error reset (Edge effective function)	Invalid: Disable; Valid: Enable.
6	Zero speed retention	Valid: Enables the zero fixed function. Invalid: Zero fixed function is disabled.
7	Forward Jogging	Valid: Input per the given instruction; Invalid: Run instruction to stop input.
8	Reverse jogging	Valid: Reverse input per the given instruction; Invalid: Run instruction to stop input.
9	Forward limit	Valid: Forward drive is disabled. Invalid: Forward drive is allowed.
10	Reverse limit	Valid: Reverse drive is disabled; Invalid: Reverse drive is allowed.
11	Origin switch	Invalid: Not triggered. Valid: Triggered.
12	Return-to-zero function is enabled	Invalid: Disabled Valid: Enabled

Function No.	Function name	Description
		Description on Input signal functions
13	Speed limit selection	Valid: Torque instruction absolute value reaches the setting value Invalid: Torque instruction absolute value is below the setting value
14	Forward torque limit selection	According to the selection of 2015:04h, torque limit source is switched.
15	Reverse torque limit selection	According to the selection of 2015:04h, torque limit source is switched.
16	The preset position enable	Valid: servo motor runs multi-stage position instructions; Invalid: servo motor is locked;
19	Torque instruction reversing	Invalid: Positive direction; Effective: Reverse direction.
20	Speed instruction reversing selection	Invalid: Positive direction; Effective: Reverse direction.
22	Gain switching selection	2008-09h=0 时: Invalid: Speed control loop is PI control; Valid: Speed control loop is P control. 2008-09h =1 hour: Execute per the settings of 2008-0Ah.
23	Runing instruction switch	Invalid: The present running instruction is A Valid: The present running instruction is B
24	Mode switch 1	According to the selected control mode (3/4/5), switch between speed/position/torque modes
25	Mode switch 2	According to the selected control mode (6), switch between speed/position/torque modes
26	Electronic gear switch	Invalid: Electronic gear ratio 1 Valid: Electronic gear ratio 2
27	DeError instruction selection 1	16 preset instruction selection
28	DeError instruction selection 2	16 preset instruction selection
29	DeError instruction selection 3	16 preset instruction selection

Function No.	Function name	Description				
Description on Input signal functions						
30	DeError instruction selection 4	16 preset instruction selection.				
31	The present DI trigger point used as the origin	Valid: Triggered Invalid: Not triggered				

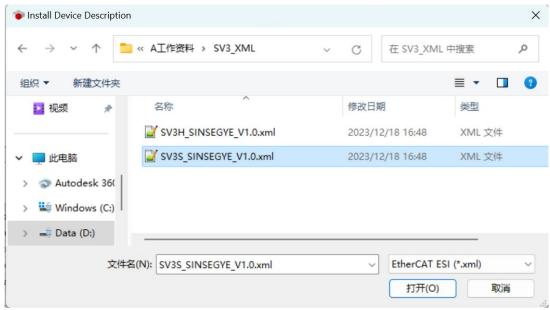
8.2 SDO Transmission Stop Code

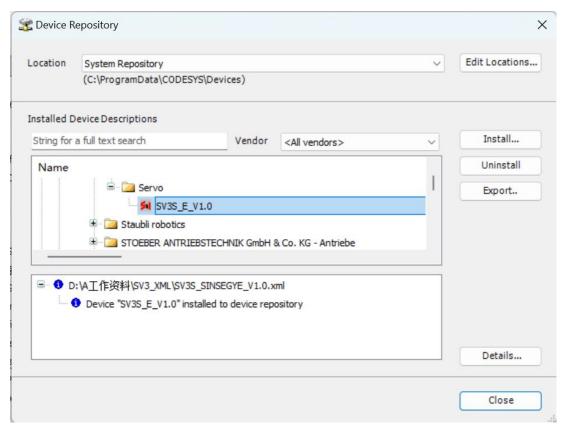
When exception of communication or drive occurs, servo drive would send an emergency message to network as a producer, or send an abort response when SDO transmission is abnormal. There are 4Byte abort codes in SDO abort response data, representing various termination reasons, as shown in the following table:

Abort code	Function description	Abort code	Function o

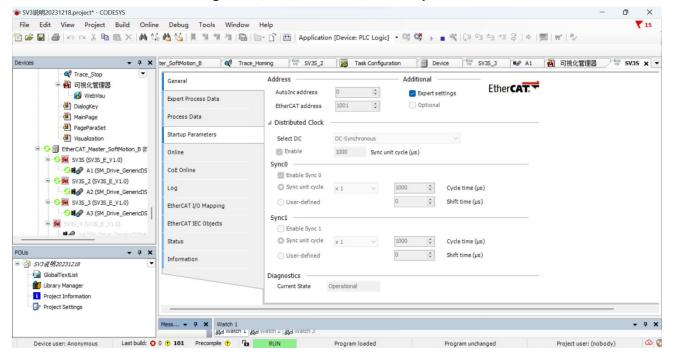
Abort code	Function description	Abort code	Function description
0x05 03 00 00	Rollover bit doesn't change in segmented transmission	0x06 07 00 12	Data type doesn't match, and length of service parameters is too long
0x05 04 00 00	SDO transfer timeout	0x06 07 00 13	Data type doesn't match, and length of service parameters is too short
0x05 04 00 01	Command code is invalid or unknown	0x06 09 00 11	Subindex does not exist
0x05 04 00 05	Memory overflow	0x06 09 00 30	The written data is out of range
0x06 01 00 00	The object is not accessible	0x06 09 00 31	The value of written data is too large.
0x06 01 00 01	Read a write-only object	0x06 09 00 32	Data value written is too small
0x06 01 00 02	To write a read-only object	0x06 09 00 36	The maximum is less than the minimum
0x06 02 00 00	The data object doesn't exist in data dictionary	0x08 00 00 00	Common error
0x06 04 00 41	Object can't be mapped to PDO	0x08 00 00 20	Data can't be transferred or saved to application
0x06 04 00 42	Number and length of mapped objects exceed PDO length	0x08 00 00 21	Data can't be transferred or saved to application due to local control

Function No.	Function name	Description	Remarks			
Description on output signal functions						
1	Servo Ready (rdy)	Servo state is ready to receive S:ON effective signal: Valid: Servo ready; Invalid: Servo is not ready.	Servo is not ready: the servo has a Type I or Type II Error, or DI emergency stop is valid.			
2	Servo Run (Run)	Server is in the RUN state and can receive commands: Valid: Servo can run; Invalid: Servo can't run.	-			
3	Servo Warn Output (Warn)	Alarm output signal is valid.(Conductive)	-			


Function No.	Function name	Description	Remarks				
	Description on output signal functions						
4	Servo Error output (Error)	The status is valid when Error is detected.	-				
5	Motor Motion (TGon)	When motor speed is higher than the threshold 2006:11h: Valid: Motor motion signal is valid; Invalid: Motor motion signal is invalid.	-				
6	Zero speed signal (Zero)	Output signal when servo motor stops Valid: Motor speed is zero; Invalid: Motor speed is not zero.	-				
7	Consistent Speed (VCmp)	Under speed control, absolute value of the difference between motor speed and speed instruction is less than 606Dh; It reaches the speed threshold, and the time meets 606Eh, it's valid.	-				
8	Velocity Arrival (VArr)	Valid: Speed feedback reaches the setting; Invalid: Speed feedback doesn't reach the setting.	-				
9	Torque Arrival (TArr)	Valid: Absolute torque reaches the setting; Invalid: Torque absolute value is less than the setting.	-				
10	Positioning Near	Under position control, it's effective when position deviation pulse reaches the setting of positioning near signal amplitude P13.09.	-				
11	Position arrival(Coin)	Under position control, position deviation pulse reaches the threshold 6067h of positioning completion, and the time reaches 6068h; It is valid.	-				
12	Torque Limit (Clt)	Confirmation signal of torque limit: Valid: Motor torque is limited; Invalid: Motor torque isn't limited.	-				
13	Speed Limit (Vlt)	Confirmation signal of speed limitation in torque control: Valid: Motor speed is limited; Invalid: Motor speed is not limited.	-				
14	Zero return completed, HomeOK	Valid: The origin zeroing is completed; Invalid: The origin zeroing is uncomplete;	-				


Function No.	Function name	Description	Remarks			
Description on output signal functions						
17	Holding brake control (BK)	Brake signal output Valid: Switch off, brake is cancelled; Invalid: Start the brake.	-			
18	Dynamic Brake (DB)	Valid: Dynamic brake relay is OFF, dynamic brake is enabled; Invalid: Dynamic brake relay is ON, dynamic brake is disabled;	-			
19	Magnetic pole identification ready (AngRdy)	Valid: Magnetic pole identification is ready; Invalid: Magnetic pole identification bit is uncomplete;	-			

8.3 Application Cases of Adapting Codesys Host Station


Click Device Repository in Tools drop-down, and click Install XML file SV3H_SINSEGYE_V1.0.xml.

After the installation, on the premise of physical wiring is proper, if scanning EtherCAT master station, slave station data can be scanned. After the configuration, SV3 can be enabled normally.

8.4 Adapting TwinCAT Operation Guide

8.4.1 TwinCAT Jog Operation

TwinCAT is PC-based control software, which transforms control function from hardware to software module, and integrates PLC, motion control and CNC into a PC software solution. In this section, TwinCAT3 will be used for jogging operation of SV3 servo.

Jogging operation of TwinCAT3-NC axis debugging interface

- A) Place description file (SV3H_SINSEGYE_V1.0.xml) of EtherCAT in the path C:\TwinCAT\3.1\Config\Io\EtherCAT;
- B) Open TwinCAT3;
- C) Install NIC driver:
 - I) Click TwinCAT option on the menu bar and select Show Realtime EtherCAT Compatible Decives from the drop-down list as shown below.

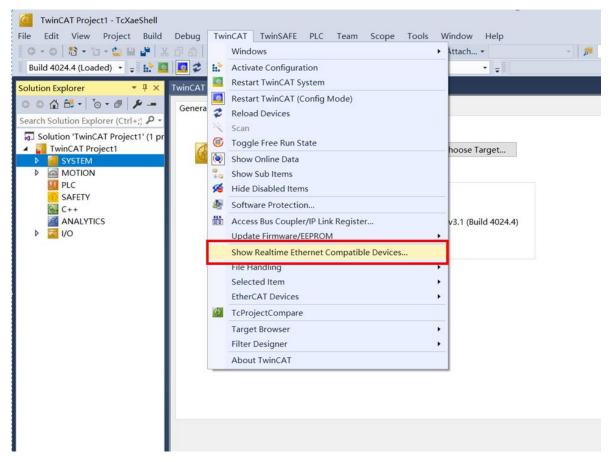


Figure 8-1 Open NIC driver and install

II) The following popup is as follows: Select local connection in Incompatible devices, then click Install to install NIC, and click Enable.

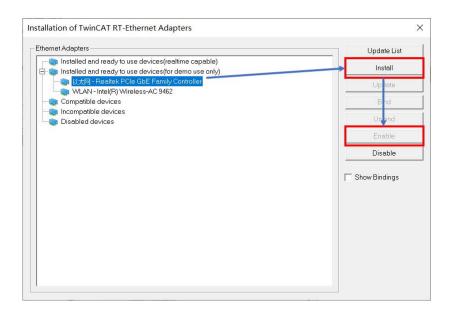


Figure 8-2 NIC driver installation window

- D) New TwinCAT3 project
 - I) As shown in the following figure, there are 2 ways to create a TwinCAT3 project:
 - Method 1: Click File-New-Project in menu bar,
 - Method 2: Click the middle view window of software and click New TwniCAT Project.

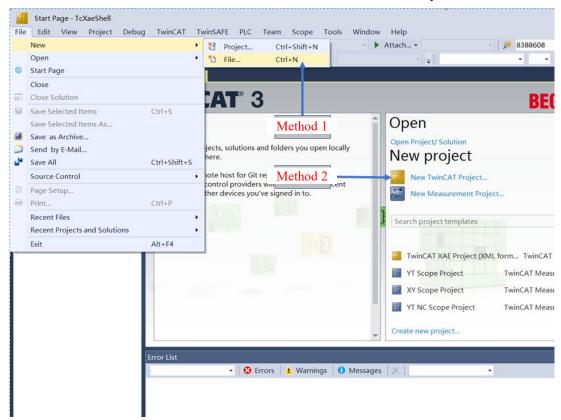


Figure 8-3 New TwinCAT3 Project

II) Pop up the following window, select TwinCAT XAE Project(XML format), enter project name, select project path, and click OK

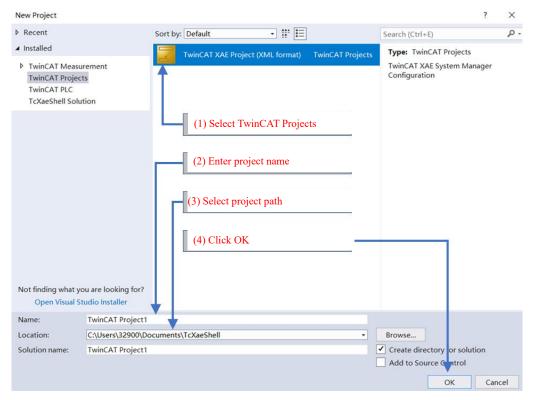
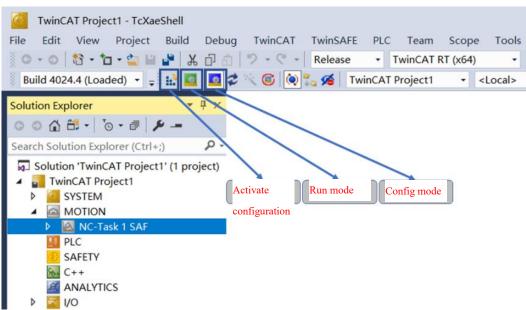
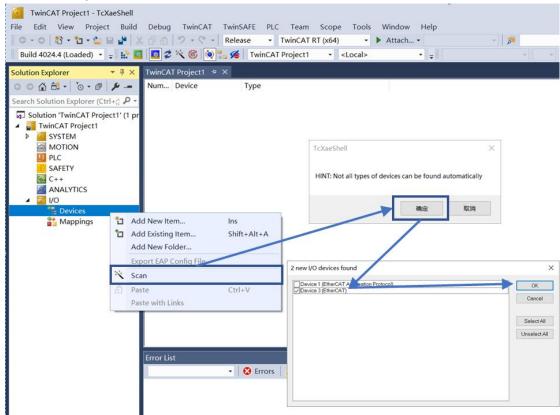



Figure 8-4 TwinCAT new project interface

E) Switch TwinCAT3 to Config mode


Click Config mode button as shown below.(Note: If Activate Configuration, Restart TwinCAT System and Config Mode in the menu bar are all gray and unavailable, click TwinCAT icon at the lower right corner of PC, select System option in list, and then click Config so as to switch TwinCAT3 status)

5Figure 8-5 TwinCAT3 toolbar

F) Scan the servo and add NC axis

I) In the left tree list, expand I/O node, right-click Devices, click Scan, click OK in the popup prompt, and then pop up new I/O devices found window in which it lists the scanned EtherCAT devices. Check the

servo (usually as Devices* (EtherCAT)) and click OK.

Figure 8-6 TwinCAT3 Scanner

II) Inquiry window will pop up, as shown below. Click YES

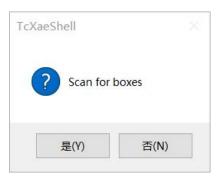


Figure 8-7 ScanBox popup

III) Inquiry window will pop up, as shown below. Click OK

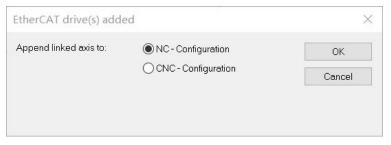


Figure 8-8 Add NC axis popup

IV) Inquiry window will pop up as shown below. Click No

Figure 8-9 Switch to the Free Run popup or not

G) Configure NC axis parameters

PLC axis-NC axis-physical axis, there are control variable output and state variable input between these axis. PLC axis is the one controlled by PLC program; NC axis is the CNC shaft that directly controls physical axis, and physical axis is the actual one scanned.

I) Link NC axis to physical axis. If no axis was created in PLC, it's unnecessary to link PLC axis, shown as in the following figure(while scanning the device, a window will pop up to ask if it's linked to NC axis or CNC axis. Click Yes, then NC axis will be automatically linked).

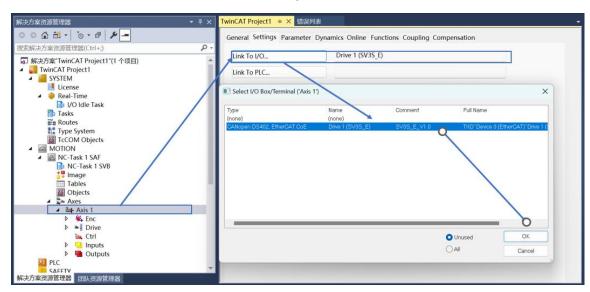


Figure 8-10 Link NC axis and physical axis

- II) To change NC axis Enc parameter, click Enc node in the left tree list, then click on Parameter tab in the expanded view in the middle of the software. In Encoder Evaluation, find the following 2 parameters:
 - Scaling Factor Number: Electronic gear ratio numerator NC axis displacment per 1 turn of motor rotation. Here, enter 60, i.e., NC axis moves 60mm per 1 turn of motor rotation.
 - Scaling Factor Denominator (deError: 1.0): Electronic gear ratio denominator motor encoder resolution,

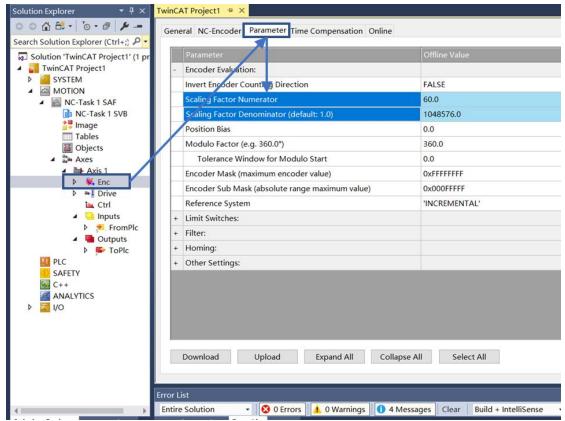


Figure 8-11 Change the electronic gear ratio of NC axis

III) To change Axis parameters, click Axis 1 node in the left tree list, click on Parameter tab in the expanded view in the middle of the software. In Manual Motion and Homing and in Monitoring, find the following 5 parameters and set them to the following values:

Manual Velocity(Fast): High JOG speed - 600mm/s

Manual Velocity(Slow): Low JOG speed - 60mm/s

Position Lag Monitoring: Position lag monitoring -- FALSE

Position Range Monitoring: Position range monitoring -- FALSE

Target Poistion Monitoring: Target location monitoring -- FALSE

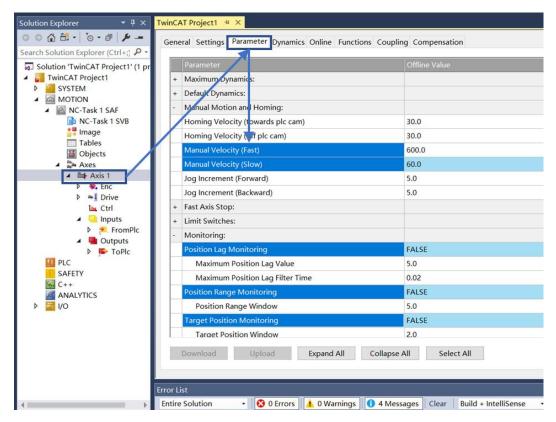


Figure 8-12 High/low speed setting of NC axis jog

H) Activation configuration

Click Activate Configuration, click OK in the pop-up, and pop up query window again, click OK to enter Run Mode

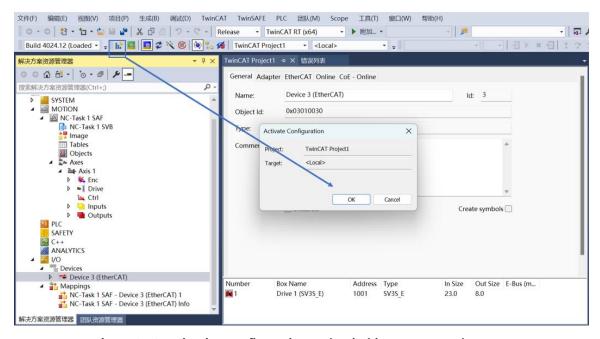


Figure 8-13 Activating configuration and switching to Run mode

I) TwinCAT3 execute servo JOG

- I) Select Axis 1 node in the left tree list and click Online tab in the middle view window of the software;
- II) Click Set button, then pop up Set Enabling window, click All, and then click OK.
- III) Here, Ready check box under State (log.) should be checked (if not, please check if the servo reports an error and clear NC axis error in TwinCAT3);
- IV) Click F1-F4 at will, and then perform JOG of servo device.

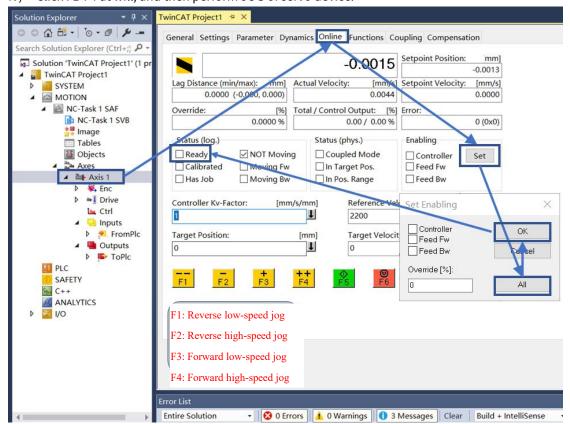


Figure 8-14 NC axis jog

J) TwinCAT3 performs simple movements of servo device

Shown as below, select Axis 1 node in the left tree list, select Functions tab in the middle view of the software, and select Run mode in Start Mode so as to perform various forms of motion of servo device.

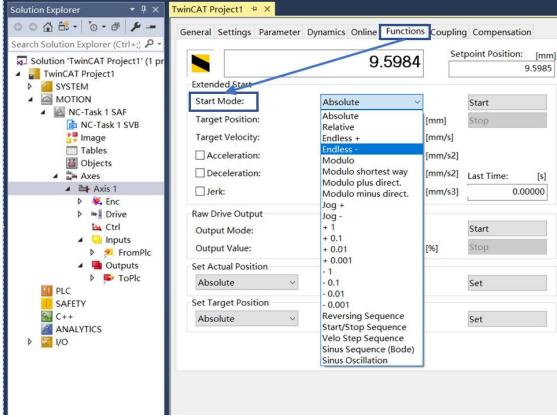


Figure 8-15 NC axis compound movement

8.4.2 TwinCAT3-PDO Control Operation

(1) Change of PDO mapping objects

Application object and PDO allocation object in PDO variable mapping objects can be changed by upper machine software. The specific steps are as follows:

- A) TwinCAT3 changes transmit PDO Maooing: As shown in the following figure
 - Click the scanned servo device in the left tree list, and click Process Data in the middle view of the software.
 - Click SV3H in Sync Manager;
 - III) In PDO Assignment(0x1C12), uncheck 0x1701 and check 0x1600;
 - IV) Click 0x1600 in Index column of PDO List;
 - V) Right click in PDO Content (0x1600), remove the existing PDO by Delete option, and add PDO by Add new Item.

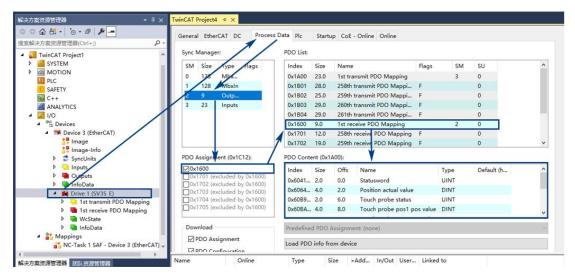


Figure 8-16 TwinCAT3 Modify RxPDO mapping list

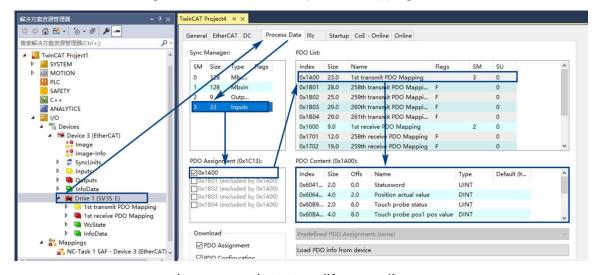


Figure 8-17 TwinCAT3 Modify TxPDO list

- B) TwinCAT3 modify transmit PDO Maooing: As shown in the following figure
 - Click the scanned servo device in the left tree list, and click Process Data in the middle view of the software.
 - II) Click SM3 in Sync Manager;
 - III) Under PDO Assignment (0x1B01), uncheck 0x1701 and then check 0x1A00;
 - IV) Click 0x1A00 in Index column of PDO List;
 - V) Right click in PDO Content (0x1A00); Remove the existing PDO by Delete option, and add PDO by Add new Item.

(2) PDO assignment

Switch TwinCAT3 status to Config mode, select NC axis in the left tree list, click Link To I/O in Setting interface, a window will pop up, select none, click OK, then disconnect the variable link between NC axis and servo drive device.

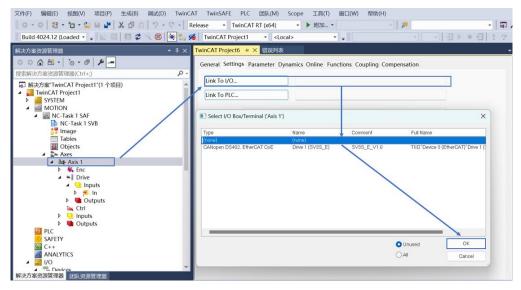


Figure 8-18 Unlink NC axis and physical axis

After unlinking the variable of PDO and NC axis, click servo drive PDO list, and set Link to of all response objects as empty, and re-activate the configuration.

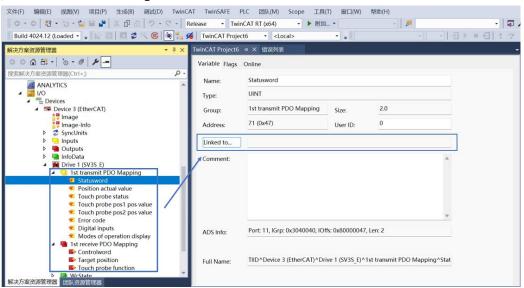


Figure 8-19 Link interface of physical axis variables

A) Double click Controlword in PDO list, click Online in the middle view box of the software, and click one by one as shown below, then assignment of control word is successful.

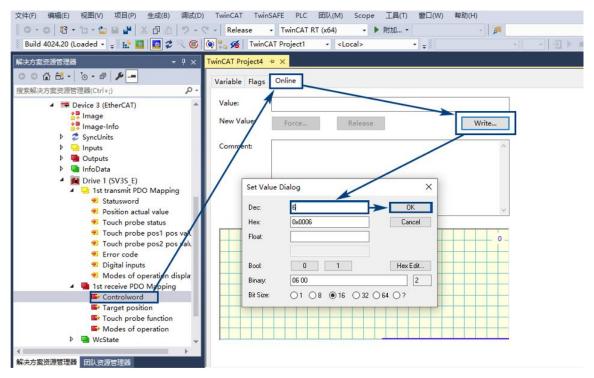


Figure 8-20 RxPDO assignment

8.5 Samples for Various Mode Operation

8.5.1 Samples for CSP Mode

Take TwinCAT3 for example, drive the motor in periodic position mode. Flowchart as follows:

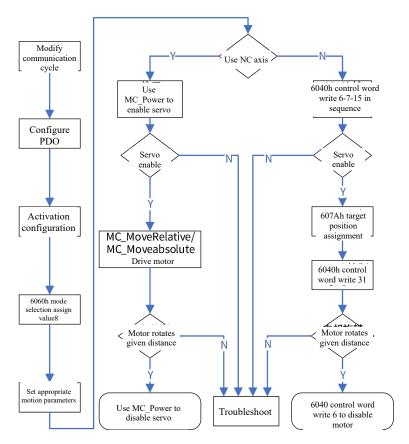


Figure 8-21 Flowchart of cases in CSP mode

Detailed steps as follows:

I)Set communication cycle in upper controller;

- II) Select the appropriate PDO mapping object according to 0 run mode settings and activate the configuration.
 - III) Assign 6060h mode as 8;
 - IV) Set appropriate motion parameters according to the relevant objects in this section.
 - V) If using NC axis, select NC_Power to enable servo drive.

If NC axis link is disconnected, write 6-7-15 to 6040h control word in turn. Here, the servo should be enabled, if not, please check if servo alarm occurs, if the first 2 arrays show 88, if upper computer software alarm occurs;

- VI) If using NC axis, drive function block corresponding to the upper controller is used for positioning; If NC axis link is disconnected, 607Ah target position is assigned (low-speed run recommended: 607A value = communication cycle (s) * Max. motor speed (r/s) /10), and then assign 6040h control word of 31;
 - VII) After operation ends, write 6040h control word as 6 and the test ends.

8.5.2 Samples for CSV Mode

Take TwinCAT3 for example, drive the motor in periodic speed mode. Flowchart as follows:

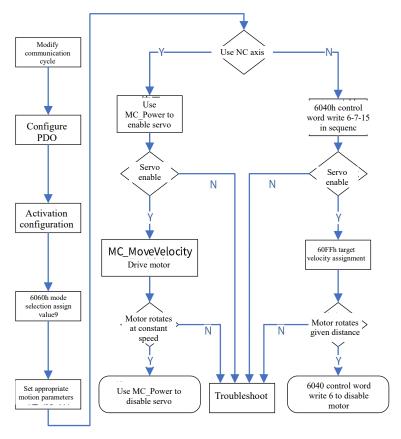


Figure 8-22 Flowchart for case in CSV mode

Detailed steps as follows

I)Set communication cycle in upper controller;

- II) Select the appropriate PDO mapping object according to 0 run mode settings and activate the configuration.
 - III) Assign 6060h mode selection of 9;
- IV) Per the relevant objects in this section, set the appropriate motion parameters, but do not assign 60FFh target speed;
 - V) If using NC axis, select NC_Power to enable servo drive.

If NC axis link is disconnected, write 6-7-15 to 6040h control word in turn. Here, the servo should be enabled, if not, please check if servo alarm occurs, if the first 2 arrays show 89, if upper computer software alarm occurs;

- VI) If using NC axis, drive function block corresponding to the upper controller is used for positioning; If NC axis link is disconnected, 60FFh target speed is assigned (note the setting of electronic gear ratio);
- VII) In order to finish the run, first write 60FFh target speed of 0, and then write 6040h control word of 6 and then the test ends.

8.5.3 Samples for CST Mode

Take TwinCAT3 for example, drives the motor in periodic torque mode. Flowchart as follows:

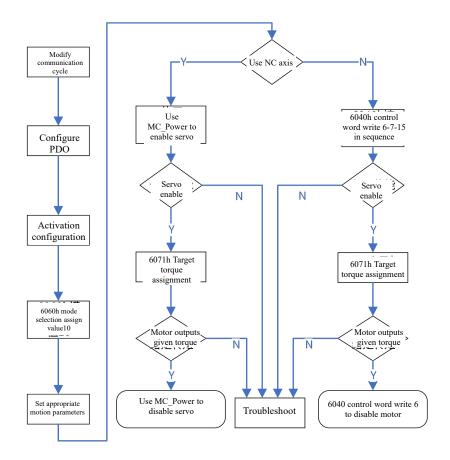


Figure 8-23 Flowchart for case in CST mode

- I) Set communication cycle in upper controller;
- II) According to 3.4.3 Setting of Running Mode, select the appropriate PDO mapping object and activate the configuration.
- III) Assign 6060h mode selection of 10;
- IV) Set appropriate motion parameters according to the relevant objects in this section.
- V) If using NC axis, use NC_Power to enable servo drive,

 If NC axis link is disconnected, write 6-7-15 to 6040h control word in turn. Here, the servo should be enabled, if

 not, please check if servo alarm occurs, if the first 2 arrays show 8A, if upper computer software alarm occurs;
- VI) TwinCAT3 has no functional block supporting torque instruction. Assign 6071h target torque. Note: the unit is 0.1%.
- VII) In order to finish the run, first write 6071h target torque of 0, and then write 6040h control word of 6 and then the test ends.

8.5.4 Samples for PP Mode

Take TwinCAT3 for example, drives the motor in profile position mode.

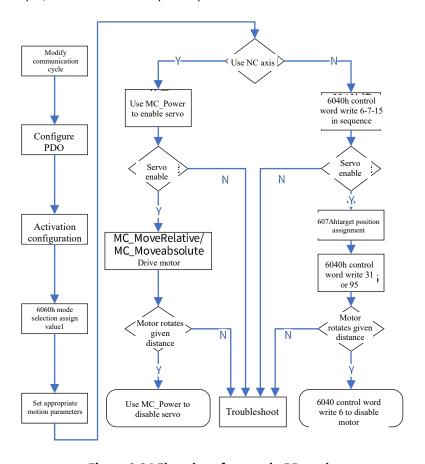


Figure 8-24 Flowchart for case in PP mode

- According to 3.4.3 Setting of Running Mode, select the appropriate PDO mapping object and activate the configuration.
- II) Assign 6060h mode selection of 1;
- III) Set appropriate motion parameters according to the relevant objects in this section.
- IV) If using NC axis, select NC_Power to enable servo drive.

 If NC axis link is disconnected, write 6-7-15 to 6040h control word in turn. Here, the servo should be enabled, if not, please check if servo alarm occurs, if the first 2 arrays show 81, if upper computer software alarm occurs;
- V) If using NC axis, drive function block corresponding to the upper controller is used for positioning; If NC axis link is disconnected, assign 607Ah target position, and then write 6040h control word as 31 or 95;
- VI) In order to finish the run, write 6040h control word of 6, and then the test ends.

8.5.5 Samples for PV Mode

Take TwinCAT3 for example, drives the motor in profile speed mode. Flowchart as follows:

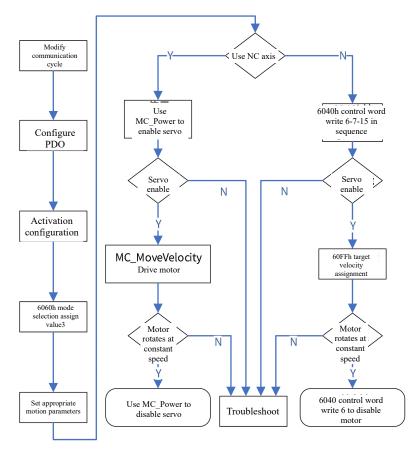


Figure 8-25 Flowchart for case in PV mode

- I) Select an appropriate PDO mapping object based on 0 Settings, and activate the configuration;
- II) Assign 6060h mode selection of 3;
- III) According to the relevant objects in this section, set the appropriate motion parameters, but do not assign 60FFh target speed;
- IV) If using NC axis, use NC_Power to enable servo drive,
- If NC axis link is disconnected, write 6-7-15 to 6040h control word in turn. Here, the servo should be enabled, if not, please check if servo alarm occurs, if the first 2
 - arrays displays 83, if upper computer software alarm occurs;
- V) If using NC axis, drive function block corresponding to the upper controller is used for positioning; If NC axis link is disconnected, assign 60FFh target speed(Note for settings of electronic gear ratio here, if it can't be assigned, please check if it's a link variable, if link variable exists, please cancel it; If 60FFh assignment is successful, when the servo motor doesn't run, please check if the acceleration/deceleration are 0);
- VI) In order to finish the run, first write 60FFh target speed of 0, and then write 6040h control word of 6 and then the test ends.

8.5.6 Samples for PT mode

Taking TwinCAT3 for example, drive the motor in profile torque mode. Flowchart as follows:

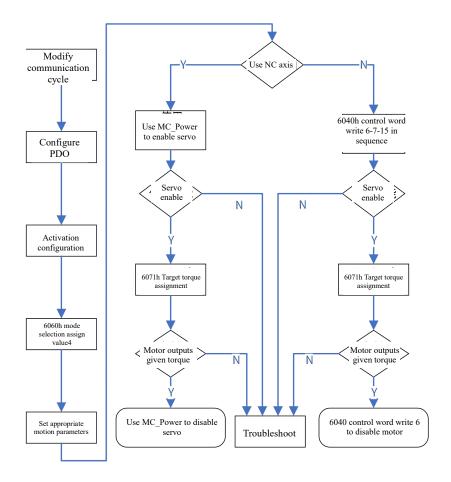


Figure 8-26 Flowchart for case in PT mode

- I) Select the appropriate PDO mapping object according to 0 run mode settings and activate the configuration.
- II) Assign 6060h mode selection of 4;
- III) Set appropriate motion parameters according to the relevant objects in this section.
- IV) If using NC axis, use NC_Power to enable servo drive,

 If NC axis link is disconnected, write 6-7-15 to 6040h control word in turn. Here, the servo should be enabled, if
 not, please check if servo alarm occurs, if the first 2 arrays show 84, if upper computer software alarm occurs;
- V) TwinCAT3 has no function block supporting torque instruction. Assign 6071h target torque, and note that the unit is 0.1%. (Note that the unit is 0.1%, if assignment fails, please check if it is a link variable, if a link variable exists, please cancel it; If 6071h assignment is successful, when servo motor doesn't run, please check if torque ramp is 0 and if motor speed limit is 0);
- VI) In order to finish the run, first write 6071h target torque of 0, and then write 6040h control word of 6 and then the test ends.

8.5.7 Return to Zero Operation Sample

Take TwinCAT3 for example, drive the motor in the origin zeroing mode. Flowchart as follows:

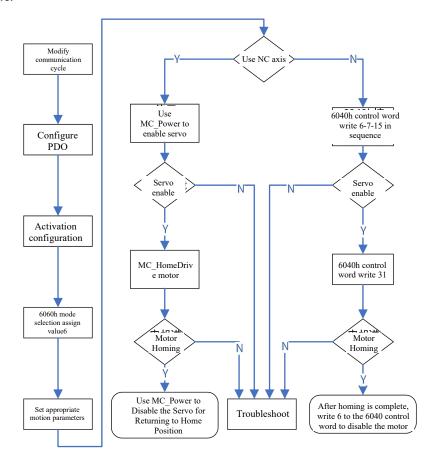


Figure 8-27 Flowchart of return-to-zero operation

- I) According to 3.4.3 Setting of Running Mode, select the appropriate PDO mapping object and activate the configuration.
- II) Assign 6060h mode selection of 6;
- III) Set appropriate motion parameters according to the relevant objects in this section.
- IV) If NC axis is used, use NC_Power to enable the servo drive, and then use MC_Home to return to zero. Note that the return-to-zero method of the upper controller, please refer to the corresponding software introduction. It isn't equivalent to the return-to-zero mode of servo drive.
- V) If NC axis link is disconnected, first set control mode of 6, and then write 6-7-15 to 6040h control word in turn. Here, enable the servo to return to zero. If fails, please check if servo alarm occurs, if the first 2-bit arrays show 86;
- VI) After the return to zero ends, write 6040h control word of 6 and the test ends